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Abstract: Cutaneous afferents convey exteroceptive information about the interaction of 32 

the body with the environment, and proprioceptive information about body position and 33 

orientation. Four classes of low threshold mechanoreceptor afferents innervate the foot 34 

sole and transmit feedback that facilitates the conscious and reflexive control of standing 35 

balance. Experimental manipulation of cutaneous feedback has been shown to alter the 36 

control of gait and standing balance. This has led to a growing interest in the design of 37 

intervention strategies that enhance cutaneous feedback and improve postural control. 38 

The advent of single unit microneurography has allowed the firing and receptive field 39 

characteristics of foot sole cutaneous afferents to be investigated. In this review, we 40 

consolidate the available cutaneous afferent microneurographic recordings from the foot 41 

sole and provide an analysis of the firing threshold, and receptive field distribution and 42 

density of these cutaneous afferents. This work enhances the understanding of the foot 43 

sole as a sensory structure and provides a foundation for the continued development of 44 

sensory augmentation insoles and other tactile enhancement interventions. 45 

 46 

News and Noteworthy: We present a synthesis of foot sole cutaneous afferent 47 

microneurography recordings, and provide novel insights about the distribution, density, 48 

and firing characteristics of cutaneous afferents across the human foot sole. The foot sole 49 

is a valuable sensory structure for the control of standing balance, and our findings 50 

provide a new understanding on how the foot sole can be viewed as a sensory structure.  51 



 3 

Introduction  52 

Four classes of low threshold cutaneous mechanoreceptors innervate the glabrous 53 

skin on the sole of the foot and palm of the hand. Each class is uniquely sensitive to 54 

deformation and motion of the skin and transmits tactile and proprioceptive feedback 55 

through sensory afferents to the central nervous system (CNS) (McGlone and Reilly, 56 

2010). The development of microneurography in the 1960s by Hagbarth and Vallbo 57 

permitted the study of single cutaneous afferents in awake human subjects (Hagbarth and 58 

Vallbo, 1967; Vallbo et al., 2004). The technique was originally developed in the arm, 59 

and the understanding of cutaneous afferent firing and receptive field characteristics is 60 

largely a product of these early studies that investigated afferent recordings from the hand 61 

(Hagbarth et al., 1970; Knibestöl and Vallbo, 1970; Johansson and Vallbo, 1979a). The 62 

same classes of mechanoreceptor afferents as those described in the hand innervate the 63 

foot sole (Miller and Kasahara, 1959; Kennedy and Inglis, 2002); however, fewer studies 64 

have recorded cutaneous afferents in the lower limb. To understand the functional role of 65 

cutaneous feedback, the distribution and firing thresholds of individual cutaneous 66 

afferents across the body must first be assessed. In this review, we summarize 67 

microneurographic recordings made from several populations of foot sole cutaneous 68 

afferents. We provide an analysis of mechanoreceptor firing thresholds and receptive 69 

field characteristics, as well as provide afferent distribution and density calculations.  70 

Why study foot sole cutaneous afferents? Cutaneous feedback from the soles of 71 

the feet plays an important role in the control of gait and standing balance (Kavounoudias 72 

et al., 1998; Inglis et al., 2002; Zehr et al., 2014). Skin stretch and pressure feedback 73 

associated with standing balance are conveyed by cutaneous afferents into the central 74 
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nervous system (CNS) where it interacts with descending motor commands at the spinal 75 

cord and reflexively modulates motor neuron excitability (Zehr and Stein, 1999; Fallon et 76 

al., 2005; Bent and Lowrey, 2013). Furthermore, cutaneous feedback provides 77 

proprioceptive cues at the ankle joint (Lowrey et al., 2010; Howe et al., 2015; Mildren et 78 

al., 2017)  and a sense of body movement with respect to the ground (Kavounoudias et 79 

al., 1998). In situations where this cutaneous feedback is impaired, either experimentally 80 

through cooling (Eils et al., 2004), local anaesthesia (Meyer et al., 2004a) or naturally 81 

through ageing (Perry, 2006; Peters et al., 2016) and disease (Prätorius et al., 2003; Kars 82 

et al., 2009), the control of standing balance is compromised. To fully understand how 83 

afferent feedback can contribute to the control of standing balance, we must first establish 84 

the capabilities of foot sole cutaneous afferents to respond to tactile input. 85 

Previous work has thoroughly presented the specialization of each 86 

mechanoreceptor ending with associated afferent firing properties in the hand (Macefield, 87 

1998; Johnson, 2001). The hand and feet contain the same classes of mechanoreceptor 88 

endings and detailed descriptions of these endings can be found in previous studies 89 

(Loewenstein and Skalak, 1966; Chambers et al., 1972; Fortman and Winkelmann, 1973; 90 

Iggo and Andres, 1982; Abraira and Ginty, 2013). The objective of the current review is 91 

to provide a physiological summary of a selection of microneurographic recordings made 92 

from cutaneous afferents innervating the human foot sole.  93 

We have compiled the published tibial nerve cutaneous afferent recordings 94 

available in the literature (Kennedy and Inglis, 2002; Fallon et al., 2005; Lowrey et al., 95 

2013; Strzalkowski et al., 2015a), in addition to 72 unpublished foot sole units. From the 96 

401 units identified, 364 were in the plantar surface of the foot sole and form the basis of 97 
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the analysis in this review. We begin with a brief description of the technique of 98 

microneurography and review how the four classes of cutaneous afferents were collected 99 

and classified. Next, we summarize the foot sole cutaneous afferent literature and provide 100 

new insights highlighting afferent firing threshold, receptive field characteristics and 101 

distribution, as well as provide the first estimates of foot sole innervation density.  102 

 103 

Microneurography: Single unit recordings  104 

Signals provided between individual neurons represent the fundamental 105 

mechanism for information transfer in the nervous system (Parker and Newsome, 1998). 106 

Microneurography is a method to record peripheral nerve activity in awake human 107 

subjects and provides a tool to link neural activity with functional outcomes. The original 108 

technique was developed in Uppsala Sweden by Karl-Erik Hagbarth and Åke Vallbo 109 

between 1965 and 1966, with the initial interest to study human muscle spindles from 110 

multi-unit recordings (Vallbo et al., 2004). Since then, microneurography has been 111 

applied to the study of cutaneous mechanoreceptor, thermoreceptor and nociceptor 112 

afferents, C-tactile afferents, golgi tendon organs, joint receptors, muscle spindles, and 113 

cutaneous and muscle sympathetic efferents (Roll and Vedel, 1982; Ochoa and 114 

Torebjörk, 1989; Wallin and Elam, 1994; Campero et al., 2001; Hagbarth, 2002; 115 

Macefield, 2005; Ackerley et al., 2014; Condon et al., 2014; Pruszynski and Johansson, 116 

2014; Strzalkowski et al., 2016; Peters et al., 2017). The technique was developed in the 117 

arm, and the majority of recordings have been made from the forearm and hand; however 118 

there is growing interest in studying the lower limb (Ribot-Ciscar et al., 1989; Trulsson, 119 
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2001; Kennedy and Inglis, 2002; Aimonetti et al., 2007; Bent and Lowrey, 2013; Lowrey 120 

et al., 2013; Strzalkowski et al., 2015a). 121 

Microneurography involves the percutaneous insertion of two tungsten 122 

microelectrodes: one reference, placed a few millimetres under the skin, and one 123 

recording electrode, manually inserted into a peripheral nerve (Figure 1). The target nerve 124 

for foot sole cutaneous afferents is the tibial nerve, and recordings are made at the level 125 

of the popliteal fossa where the tibial nerve runs several centimetres below the skin. The 126 

tibial nerve divides into three terminal branches distal to the popliteal fossa; the lateral 127 

and medial plantar nerves and the medial calcaneal branches (Davis and Schon, 1995). 128 

Together these branches innervate the skin on the foot sole with the exception of the far 129 

medial arch, which is supplied by the saphaneous terminal branch of the femoral nerve. 130 

Tibial nerve microneurography therefore provides a nearly complete picture of foot sole 131 

innervation. For detailed reviews on the microneurography technique and applications we 132 

recommend: (Gandevia and Hales, 1997; Bergenheim et al., 1999; Hagbarth, 2002; 133 

Vallbo et al., 2004).  134 

  135 

Overview of cutaneous afferents  136 

Cutaneous mechanoreceptors and their associated afferents are the fundamental 137 

units for the transduction and transmission of tactile feedback to the CNS (Johnson, 2001; 138 

Abraira and Ginty, 2013; Zimmerman et al., 2014). Cutaneous afferents are distinguished 139 

from other sensory systems for their high sensitivity and specificity to mechanical 140 

deformations of the skin. When vibration, pressure, or stretch is applied to the skin, 141 

mechanical deformations are transmitted through the tissue to the cutaneous afferent 142 
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mechanoreceptor endings. Cutaneous afferents originate in the dorsal root ganglia and 143 

project distally to specialized mechanoreceptor endings within the epidermal and dermal 144 

layers of the skin and to central targets within the dorsal horn of the spinal cord and 145 

brainstem dorsal column nuclei (Zimmerman et al., 2014). For a detailed review of 146 

cutaneous afferent projections and processing see (Abraira and Ginty, 2013).     147 

Four specialized mechanoreceptor endings have been identified that innervate the 148 

glabrous skin of the hands (Knibestöl and Vallbo, 1970; Jones and Smith, 2014) and feet 149 

(Kennedy and Inglis, 2002). The termination depth and morphology of the different 150 

mechanoreceptors dictate the unique firing characteristics exhibited by each cutaneous 151 

afferent class (Iggo, 1977; Johnson, 2001; Pruszynski and Johansson, 2014). It is well 152 

established that each cutaneous afferent class preferentially encodes distinct tactile 153 

stimuli (Johnson, 2001). This specialization allows populations of afferents to convey a 154 

wide range of tactile feedback with high resolution. The convergence of fast and slowly 155 

adapting afferent information onto neurons in primary somatosensory cortex (Pei et al., 156 

2009; Saal and Bensmaia, 2014)suggests that ultimately groups, rather than single 157 

cutaneous afferents or classes are responsible for encoding tactile stimuli beyond simple 158 

light touch (Strzalkowski et al., 2015a). 159 

 160 

Classification  161 

The combination of sensory nerve and mechanoreceptor ending make the sensory 162 

unit, commonly referred to as the cutaneous afferent. When isolated during a 163 

microneurographic recording, cutaneous afferents are classified based on their ability to 164 

respond to sustained stimuli [fast adapting (FA) or slowly adapting (SA)] as well as their 165 
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receptive field characteristics (type I or type II) (Knibestöl and Vallbo, 1970; Macefield, 166 

1998; Bergenheim et al., 1999).   167 

FA afferents are sensitive to the rate of change of mechanical stimuli and 168 

typically fire throughout the dynamic (acceleration) phase of an indentation, but cease to 169 

fire once the indentation is sustained (Knibestöl, 1973; Iggo, 1977). FA afferents 170 

generally fire at the onset of a sustained indentation and again once the stimulus is 171 

removed. This is referred to as an on-off response. Conversely, SA afferents continue to 172 

fire throughout sustained indentations and skin stretch (Iggo, 1977). SAI afferent 173 

responses are primarily related to the magnitude of the applied stimulus (Knibestöl, 174 

1975), and encode the strain distribution within the skin, which includes information 175 

about edges (Phillips and Johnson, 1981) and curvature (Goodwin et al., 1997). FAI 176 

afferents are more responsive to tactile events such as the motion or slippage of an object 177 

across the skin, as well as coarse vibrations (Knibestöl, 1973). The specialized adaptation 178 

properties of FA and SA afferents to sustained indentations is well established and 179 

remains the primary tool for the classification of cutaneous afferents as FA or SA during 180 

single unit recordings. 181 

Fast and slowly adapting cutaneous afferents are further classified as type I (FAI 182 

and SAI) or type II (FAII and SAII) based primarily on their receptive field 183 

characteristics (Johansson, 1978; Vallbo and Johansson, 1984). A receptive field 184 

represents the area of skin wherein stimulation (e.g., skin indentation) can elicit a 185 

response in a given afferent. First characterized in the hand, receptive fields are 186 

traditionally measured as the area over which an afferent responds to an indentation force 187 

4-5 times its firing threshold (Vallbo and Johansson, 1984). This convention has been 188 
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widely adopted which permits receptive fields to be compared across experiments and 189 

body location. Afferent classes display unique receptive fields that arise from the 190 

branching pattern of the distal axons and morphology and termination location of the 191 

mechanoreceptor ending(s).  192 

Type I afferents branch as they enter the skin and terminate in multiple, small 193 

mechanoreceptor endings located in superficial skin layers (Miller and Kasahara, 1959; 194 

Vallbo and Johansson, 1978; Abraira and Ginty, 2013). FAI afferents terminate in 195 

Meissner corpuscles in the dermal papillae, while SAI afferents terminate in Merkel cells 196 

in the basal layer of the epidermis (Macefield, 1998; Abraira and Ginty, 2013).  As a 197 

result, type I afferents typically have small receptive fields (hand palm ~12 mm2, foot 198 

sole ~78 mm2) with distinct borders and multiple hot-spots (Johansson and Vallbo, 1980; 199 

Kennedy and Inglis, 2002). In the hand, FAI afferents typically contain 12-17 such hot-200 

spots while SAI afferents contain 4-7, which are thought to correspond to the number of 201 

mechanoreceptor endings in each class (Macefield and Birznieks, 2009). In contrast, type 202 

II afferents do not branch within the skin and innervate a single, relatively large 203 

mechanoreceptor in the dermis and subcutaneous tissues.  FAII afferents terminate in 204 

Pacinian corpuscles and SAII afferents terminate in Ruffini endings (Macefield, 1998; 205 

Abraira and Ginty, 2013). In this way type II afferents are classified by their large 206 

receptive fields (hand palm ~88 mm2, foot sole ~560 mm2), with indiscriminate borders 207 

and a single zone of maximal sensitivity (Johansson and Vallbo, 1980; Kennedy and 208 

Inglis, 2002). In particular, FAII afferents are exceptionally sensitive to stimuli applied 209 

within, but also remote to their receptive fields, highlighted by their distinct ability to 210 

respond to blowing across the skin. SAII afferents are unique among the other classes in 211 
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their sensitivity to respond to skin stretch applied through their receptive fields (Hulliger 212 

et al., 1979; Kennedy and Inglis, 2002; Macefield and Birznieks, 2009). The receptive 213 

fields of the combined foot sole afferents summarized in this review are presented in 214 

Figure 2. 215 

 216 

Cutaneous afferents in the foot sole 217 

Previous studies have provided an initial look at the characteristics of foot sole 218 

cutaneous afferents (Kennedy and Inglis, 2002; Strzalkowski et al., 2015a; 2017); 219 

however low sample sizes have limited the ability to make clear estimates of afferent 220 

distribution and density. By combining published and unpublished microneurography 221 

recordings this review provides a comprehensive summary of the foot sole cutaneous 222 

afferent literature and the first estimate of innervation density.    223 

 224 

Methods Overview  225 

We have combined published (Kennedy and Inglis, 2002; Fallon et al., 2005; 226 

Lowrey et al., 2013; Strzalkowski et al., 2015a) and unpublished tibial nerve recordings 227 

to create a data set of 401 cutaneous afferents. The tibial nerve does not exclusively 228 

innervate the glabrous skin on the foot sole, and from this data set of 401 afferents 37 229 

were excluded from analysis because they did not have receptive fields on the sole of the 230 

foot. Of these excluded afferents, 23 afferents had receptive fields on the ankle, 4 in the 231 

nail bed, 3 on the foot dorsum and 7 afferents did not have locations reported. 232 

Calculations of afferent class firing threshold, receptive field size, distribution, and 233 

innervation density were made on the remaining sample of 364 foot sole cutaneous 234 



 11 

afferents (Table 1).  All published and unpublished data were collected with approval 235 

from their local ethics boards and complied with the Deceleration of Helsinki. 236 

To follow the approach of Johansson and Vallbo (1979), who provided the first 237 

and only estimates of the afferent innervation density for the glabrous skin of the hand, 238 

we required two pieces of information: an estimate of the total number of cutaneous 239 

afferents in the plantar nerves, and area measurements for the different foot sole skin 240 

regions. In lieu of cutaneous afferent counts for the plantar nerves, we approximated this 241 

value based on the value provided by Johansson and Vallbo (1979) for the whole hand 242 

(17,023 units), and the observation that there is approximately one tenth the myelinated 243 

fibres in the plantar nerves of the foot than in the median and ulnar nerves of the hand 244 

(Auplish and Hall, 1998). This resulted in a total plantar cutaneous fibre estimate of 245 

1,702 units. The sample of 364 foot sole units compiled in this review (Table 1) is 246 

sampled across several labs, and multiple microneurographers and is assumed to be a 247 

random selection from this population afferents innervating the foot sole. Although we 248 

cannot guarantee true randomness of afferent selection, we believe the sample compiled 249 

in this review provides an accurate representation of the class ratio and distribution of 250 

foot sole cutaneous afferents.     251 

Lastly, to obtain area measurements for the different regions of the foot sole, we 252 

optically scanned the plantar surface of the right foot in 8 adults (4 men age 25-31, US 253 

shoe size 10-12, and 4 women age 25-28, US shoe size 6-9) (Scanjet 4600; Hewlett 254 

Packard, USA), and digitally measured the various areas using ImageJ 1.42q (National 255 

Institutes for Health, USA). The foot sole was divided into nine distinct regions: the great 256 

toe (GT), digits 2 to 5 (Toes), the medial, middle, and lateral metatarsals (MedMet, 257 
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MidMet, and LatMet), the medial, middle, and lateral arch (MedArch, MidArch, and 258 

LatArch), and the calcaneus (Heel) (Figure 3).  These distinct foot regions were used to 259 

determine whether the different characteristics of interest (cutaneous afferent firing 260 

threshold, receptive field area, distribution, and density) varied by region.  261 

 262 

Firing thresholds  263 

Each class is uniquely tuned to different features of mechanical stimuli, which 264 

contributes to a comprehensive view of the tactile environment. Previous work in animals 265 

(Werner and Mountcastle, 1965; Pubols et al., 1971; Phillips and Johnson, 1981; 266 

Bensmaïa et al., 2005; Muniak et al., 2007) and the human hand (Knibestöl and Vallbo, 267 

1970; Johansson and Vallbo, 1979a; Johansson et al., 1982; Hallin et al., 2002; Condon et 268 

al., 2014) have led to the current understanding of human cutaneous afferent firing 269 

characteristics; and has formed the foundation for more recent experiments in the lower 270 

limb (Trulsson, 2001; Kennedy and Inglis, 2002; Aimonetti et al., 2007; Strzalkowski et 271 

al., 2015a; 2017). Below we review the firing thresholds recorded from cutaneous 272 

afferents in the foot sole (Table 2) and compare these to the hand to provide a more 273 

comprehensive look at the potential differences between the two sites. 274 

Monofilament testing is a common technique and standard measure of cutaneous 275 

afferent firing threshold. Semmes-Weinstein monofilaments (Collins et al., 2010) come 276 

in sets that include filaments of different gauges (length and diameter) that vary 277 

logarithmically in the load they apply. When applied perpendicular to the skin, each 278 

monofilament buckles and delivers a calibrated force (Collins et al., 2010). Cutaneous 279 

afferent threshold testing involves the application of monofilaments to the receptive field 280 
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hotspot (most sensitive location) to determine the minimal force (threshold) that can 281 

reliably (~75%) evoke afferent discharge. Monofilaments only examine afferent light 282 

touch threshold, known to be conveyed by the FA afferents (Strzalkowski et al., 2015a), 283 

whereas other mechanical stimuli, such as stretch (Aimonetti et al., 2007) and vibration 284 

(Strzalkowski et al., 2017), have been used to further characterize the firing 285 

characteristics of lower limb cutaneous afferents. These studies have shown SAII 286 

afferents to be particularly sensitive to skin stretch and FAII afferents most responsive to 287 

high frequency vibration. Despite the availability of other threshold tests, monofilaments 288 

remain the most common technique, and the literature provides a large sample of 289 

monofilament afferent firing thresholds for comparison.  290 

In the present review, we compiled the afferent monofilament firing thresholds 291 

across 1) classes and 2) foot sole region (Figure 4). Afferents with firing thresholds 292 

outside ±3 standard deviations of the class mean were excluded (4 units excluded). To 293 

determine if differences in mechanical thresholds between afferent classes and skin 294 

regions were significant, we performed a 4 (classes) by 9 (regions) factorial ANOVA on 295 

the observed threshold values.  We observed significant effects of afferent class (F3,311 = 296 

11.254, p < 0.001) and skin region (F8,311 = 2.329, p = 0.02), however, there was no class 297 

by region interaction (F24,311 = 1.547, p = 0.055). For afferent class, Turkey post-hoc tests 298 

revealed that SAII afferents had higher mechanical thresholds than the other three classes 299 

(p < 0.001). For the different skin regions, Tukey post-hoc tests additionally revealed that 300 

the heel has higher thresholds than the lateral arch and the toes (p < 0.05). Regional 301 

variation in afferent firing thresholds correspond well with previously reported 302 

monofilament (light touch) perceptual thresholds that are consistently found to be highest 303 
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in the heel (Kekoni et al., 1989; Nurse and Nigg, 1999; Hennig and Sterzing, 2009; 304 

Strzalkowski et al., 2015a; 2015b). Across the foot sole FA afferents consistently have 305 

lower firing thresholds than SA afferents. Median FAI and FAII afferent thresholds are 306 

0.69 g and 0.5 g, while SAI and SAII afferent thresholds are 1.74 g and 10.0 g 307 

respectively. Cutaneous afferent classes in the hand are similarly segregated by firing 308 

threshold but at much lower thresholds (approximately 10 fold) than those in the foot sole 309 

(hand median FAI 0.06 g, FAII 0.05 g, SAI 0.13 g, SAII 0.76 g) (Johansson and Vallbo, 310 

1980). Differences in firing threshold between hands and feet likely reflect an adaptation 311 

to the different functional demands of each region. Low firing thresholds in the hands is 312 

advantageous for manipulating objects, while high threshold afferents from the foot sole 313 

may better serve the high forces of standing balance. The mechanical properties of the 314 

skin can partially explain some differences in firing thresholds between the hands and 315 

feet (Strzalkowski et al., 2015a), however it is unclear if regional differences exist 316 

between the mechanoreceptor endings themselves.  Future studies are needed to explore 317 

the firing patterns of cutaneous afferents under natural loaded and/or dynamic conditions. 318 

 319 

Receptive field characteristics   320 

Receptive fields are traditionally mapped onto the skin surface using a 321 

monofilament that delivers a force four to five times greater than the afferent firing 322 

threshold (Vallbo and Johansson, 1978; Johansson and Vallbo, 1980). Receptive field 323 

borders are then drawn onto the foot sole by connecting the furthest points from the 324 

receptive field hotspot at which an afferent discharge can be evoked. These methods were 325 

used for all afferents in the present review (Figure 2 and 5). To determine if differences 326 
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in RF area between afferent classes and skin regions are significant, we performed a 4 327 

(classes) by 9 (regions) factorial ANOVA on the observed RF area values. We observed 328 

significant effects of afferent class (F3,315 = 23.510, p < 0.001) and skin region (F8,315 = 329 

3.643, p < 0.001), as well as a class by region interaction (F24,311 = 2.397, p < 0.001). For 330 

afferent class, Turkey post-hoc tests revealed that FAII afferents have larger receptive 331 

fields than the other three classes (p < 0.001). SAII afferents also have larger receptive 332 

fields that FAI afferents (p < 0.05). For the different skin regions, Tukey post-hoc tests 333 

additionally revealed that the toes have smaller receptive fields than the heel and middle 334 

metatarsal regions (p < 0.05). 335 

The relationships between receptive field size, afferent class and foot sole location 336 

are similar to those reported in the hand, although hand receptive fields are smaller than 337 

those in the foot sole  (Knibestöl, 1973; 1975; Johansson and Vallbo, 1980). Type II 338 

afferents in the foot sole and hand have larger receptive fields (median foot sole FAII 339 

481.1 mm2, SAII 171.6 mm2, median hand FAII 101.3 mm2, SAII 58.9 mm2) compared 340 

to type I afferents (median foot sole FAI 55.0 mm2, SAI 66.4 mm2, median hand FAI 341 

12.6 mm2, SAI 11.0 mm2) (Johansson and Vallbo, 1980) (Table 2, Figures 2 and 5). The 342 

toes and fingers have smaller receptive fields compared to the foot sole and hand palm; 343 

which is thought to reflect the physical boundaries of these regions. In the hand, FAI 344 

receptive fields have been shown to be 52% and SAI receptive fields 23% smaller in the 345 

fingers than the palm (Knibestöl, 1973; 1975). Knibestöl used a glass probe to measure 346 

receptive fields and direct area comparisons with the present data is not possible; 347 

however, toe receptive fields (median FAI 42.4 mm2, FAII 71.1mm2, SAI 51.8 mm2, 348 

SAII 137.4 mm2) are smaller compared to the rest of the foot sole. Receptive field sizes 349 
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reflect mechanoreceptor size and termination depth and further work is needed to 350 

investigate the functional significance of receptive field differences between regions in 351 

the foot sole.  352 

In summary, receptive field data provides a valuable way to understand the 353 

relative responsive areas between cutaneous afferent classes and regions. Smaller RF 354 

enables the potential for greater resolution of tactile feedback. Foot sole receptive fields 355 

are found to be larger than those reported in the hands, with type II afferents displaying 356 

the largest receptive fields in both regions. Receptive field characteristics are thought to 357 

reflect class specific mechanoreceptor morphology and termination depths. It is important 358 

to note that the 4-5 times threshold method of calculating receptive fields in the hands 359 

and feet is arbitrary, however it is a consistent method that has been used to quantify 360 

activation areas across body regions and afferent classes.   361 

 362 

Receptive field distribution  363 

The distribution of cutaneous afferents across the foot sole could indicate areas of 364 

relative tactile importance (concentration of afferents). In the hand, the high 365 

concentration of type I afferents in the finger tips relative to the palm is thought to reflect 366 

the functional significance of tactile feedback from the fingers (Johansson and Vallbo, 367 

1979b). To analyze the cutaneous afferent distribution in the foot sole, we began with a χ2 368 

test across nine-foot sole regions (Figure 2). Based on the relative size of each plantar 369 

skin region, this test indicated that the observed proportion of units in each area was 370 

highly non-uniformly distributed (χ2 = 31.999, p < 0.001). We calculated the likelihood 371 

ratio of randomly sampling a cutaneous receptor in general, and for each class by 372 
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dividing the proportion of the total units sampled in each region by the proportion of the 373 

total foot sole area for each region (Table 3). Following Johansson & Vallbo (1979), we 374 

used binomial tests to examine pairwise differences between different plantar skin 375 

regions. The hypothesis tested by these binomial tests is given by the equation,  376 

𝑃" =
𝑎

𝑎 + 𝑏 377 

where PA is the proportion of units sampled from region A of the total number of units 378 

sampled from regions A and B, and a and b are the areas of the two corresponding skin 379 

regions. Previous work reports an even distribution of cutaneous afferents across the foot 380 

sole (Kennedy and Inglis, 2002), however the present data demonstrates regional 381 

variation. Notably, the present data reveal a higher proportion of cutaneous afferents to 382 

innervate the toes (digits 2-5), as well as LatMet, and LatArch than expected if an even 383 

distribution was present (Table 3). To simplify the interpretation of this analysis, we 384 

chose to perform pairwise binomial tests for three distinct comparisons; proximal-distal 385 

over the whole foot sole, and medial to lateral for two regions, metatarsal and arch (see 386 

Figure 6). 387 

To investigate the potential for any proximal-distal distribution gradient we 388 

compared the toes (collapsing over GT and digits 2-5), metatarsals/arch (collapsing over 389 

medial, middle, and lateral portions), and the heel. For all units, binomial tests revealed 390 

that the toes had significantly more sampled afferents than the metatarsals/arch (p < 391 

0.001), and heel (p < 0.001), and the metatarsals/arch had significantly more sampled 392 

afferents than the heel (p = 0.013) (see Figure 6A). For FAI afferents, binomial tests 393 

revealed that the toes had significantly more sampled afferents than the metatarsals/arch 394 

(p < 0.001), and heel (p < 0.001), and the metatarsals/arch had significantly more 395 
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sampled afferents than the heel (p = 0.014); for SAI afferents, binomial tests revealed that 396 

the toes had significantly more sampled afferents than the metatarsals/arch (p < 0.001), 397 

and heel (p < 0.001) (Figure 6A). For type II afferents (FAII and SAII), there were no 398 

significant differences in afferent distribution across the three skin regions. Thus, we 399 

observed that the distribution of foot sole cutaneous afferents increases from the heel to 400 

the toes, driven primarily by type I afferents, with little evidence of a gradient for FAII 401 

and SAII afferents. This mirrors previous observations for the hand, where an abrupt 402 

increase in type I afferent density is observed in the fingertips compared to the middle 403 

phalanges and the palm (Johansson and Vallbo, 1979a).  404 

We additionally investigated the potential for a medial-lateral sampled 405 

distribution gradient. To accomplish this, we compared the medial, middle, and lateral 406 

portions of both the metatarsals, and the arch. In the metatarsals, for all units, binomial 407 

tests revealed that the lateral portion had a significantly greater number of sampled 408 

afferents than middle (p = 0.013), and medial (p = 0.002) portions (see Figure 6B). For 409 

FAI afferents, binomial tests revealed that the lateral portion of the metatarsals had 410 

significantly more sampled afferents than the medial portion (p = 0.007); SAI, FAII, and 411 

SAII afferents were uniformly distributed across the metatarsals (p > 0.05) (Figure 6B). 412 

Similarly, in the arch, for all units, binomial tests revealed that the lateral portion had 413 

significantly more sampled afferents than the middle (p < 0.001), and medial (p < 0.001) 414 

portions (see Figure 6C). For FAI afferents, binomial tests revealed that the lateral 415 

portion of the arch had significantly more sampled afferents than the middle (p < 0.001), 416 

and medial portion (p = 0.001); similarly, for SAI afferents, binomial tests revealed that 417 

the lateral portion of the arch had significantly more sampled afferents than the middle (p 418 
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= 0.011), and medial portion (p = 0.014), and FAII and SAII afferents were uniformly 419 

distributed across the arches (p > 0.05) (Figure 6C). These observations support the 420 

presence of a medial to lateral distribution gradient across both the metatarsals and arch, 421 

with a greater proportion of receptors residing in more lateral regions. A similar medial-422 

lateral afferent distribution gradient is not observed in median nerve recordings of hand 423 

cutaneous afferents (Johansson and Vallbo, 1979a).  424 

The proximal-distal and medial-lateral distribution gradients of type I cutaneous 425 

afferents across the foot sole has not been reported previously. The smaller sample of 426 

cutaneous afferents analysed by Kennedy & Inglis 2002, revealed an even distribution of 427 

cutaneous afferents across the foot sole. The present larger data set demonstrates that the 428 

foot sole displays regions of relatively high (toes, lateral border) and low (heel and 429 

medial border) afferent innervation; which is similar to the density gradients in the 430 

proximal-distal increase of cutaneous afferent innervation long understood in the hand 431 

(Johansson and Vallbo, 1979a). The functional implication of these afferent distribution 432 

gradients is discussed below.    433 

 434 

Innervation density  435 

The density of mechanoreceptor afferents in the skin influences tactile sensitivity 436 

(ability to detect small changes in stimulus amplitude) and acuity (ability to distinguish 437 

spatially distributed points on the skin surface). To provide estimates of the innervation 438 

density of the four afferent classes for each plantar skin region, we derived a scaling 439 

factor based on the approximate total number of cutaneous afferents in the plantar nerves. 440 

To obtain this scaling factor, we divided the estimated total number of cutaneous 441 
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afferents (1,702 units) by the total number of sampled units (364 units), giving the value 442 

4.676. By multiplying this scaling factor by the sampled densities (i.e., the number of 443 

units sampled divided by the size of the skin region), we arrive at estimates for the 444 

absolute innervation density in each region. The estimated total innervation densities, as 445 

well as the innervation densities of the four different receptor classes are presented in 446 

Figure 6 and listed in Table 3. In accordance with the distribution results, the highest 447 

innervation density was in the toes (23.3 units/cm2), followed by the lateral arch (15.4 448 

units/cm2), and the lateral metatarsals (11.2 units/cm2). The lowest innervation density 449 

was in the medial metatarsals (4.9 units/cm2). Type I afferents most densely innervate the 450 

toes (FAI: 12.2 units/cm2; SAI: 6.9 units/cm2), followed by the lateral arch (FAI: 8.7 451 

units/cm2; SAI: 2.8 units/cm2), and the lateral metatarsals (FAI: 5.6 units/cm2; SAI: 1.6 452 

units/cm2). FAII afferents most densely innervate the lateral arch (1.5 units/cm2), 453 

followed by the great toe (1.4 units/cm2), and the middle metatarsals (1.4 units/cm2). 454 

SAII afferents most densely innervate the lateral metatarsals (3.3 units/cm2), followed by 455 

the toes (2.8 units/cm2), and the lateral arch (2.4 units/cm2). 456 

 457 

Functional interpretation: A role in standing balance and gait  458 

The control of balance, whether in standing or during gait is a complex 459 

sensorimotor task that is facilitated by the integration of sensory feedback from multiple 460 

sources including the vestibular, visual and somatosensory systems (Horak et al., 1990; 461 

Winter, 1995; Thomas et al., 2003). Although it is difficult to equate behavior at a 462 

systems level to the firing of individual neurons, it is through neuronal interactions that 463 

functional outcomes emerge. There is mounting evidence that plantar cutaneous input is 464 
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crucial for the control of standing balance and gait (Kavounoudias et al., 1998; Nurse and 465 

Nigg, 1999; Meyer et al., 2004a; Zehr et al., 2014). Evidence suggests that standing 466 

posture is sensed in part by the tactile and pressure feedback transmitted by cutaneous 467 

afferents in the feet. The functional importance of this feedback has been highlighted 468 

through different experimental designs; including the experimental reduction (Perry et al., 469 

2000; Eils et al., 2004; McKeon and Hertel, 2007; Howe et al., 2015) or enhancement 470 

(Kavounoudias et al., 1999; Priplata et al., 2006; Perry et al., 2008; Lipsitz et al., 2015) of 471 

skin feedback, as well as through the study of naturally reduced cutaneous feedback that 472 

can occur with age (Perry, 2006; Peters et al., 2016) and disease (Deshpande et al., 2008; 473 

Patel et al., 2009). In cases where foot sole cutaneous feedback is reduced, measures of 474 

balance and gait performance are altered (Nurse and Nigg, 1999; Perry et al., 2000; 475 

Meyer et al., 2004a). Conversely, measures of standing balance and gait performance 476 

have been improved through different interventions that increase foot sole cutaneous 477 

feedback (Priplata et al., 2006; Perry et al., 2008; Lipsitz et al., 2015). Together these 478 

studies support a role of cutaneous feedback in the control of balance and gait; however 479 

more work is necessary in order to link neural firing to balance control.  480 

In both standing balance and gait, posture is controlled through the manipulation 481 

of the center of mass (COM) location relative to the base of support (BOS) (Winter, 482 

1995). In other words, if our body mass falls forward or backward, we need cues that will 483 

tell us to step as we have lost our balance. For bipeds, the soles of the feet are the only 484 

interface with the ground. Forces from the ground on the foot, and foot on the ground are 485 

perceived through the foot sole skin and are manipulated to control body equilibrium and 486 

orientation. In healthy people, small adjustments of ankle torque are sufficient to control 487 
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the COM body position during standing balance. This ankle-strategy however may not 488 

work in populations where tactile feedback is impaired, such as older adults (Manchester 489 

et al., 1989; Perry, 2006; Peters et al., 2016) because the feedback from the foot sole is 490 

not sufficient to give cues as to how far forward or backward the body is leaning. Indeed, 491 

it has been suggested that the CNS uses cutaneous feedback from the soles of the feet to 492 

deduce body orientation (verticality) and to help control the forces applied by the feet to 493 

manipulate the body COM (Kavounoudias et al., 1998; Meyer et al., 2004b). Although 494 

cutaneous afferent firing has not been measured during standing balance, we speculate 495 

that foot sole cutaneous afferent firing corresponds to foot sole ground reaction forces 496 

and provides feedback about the movement and position of the COM over the feet.  497 

Our findings on the distribution and density of foot sole cutaneous afferents 498 

presented in this review contributes new information about how these receptors might 499 

modulate balance outcomes. With high receptor populations in the toes and lateral border 500 

of the foot, these regions are identified as important sensory locations with populations 501 

able to delineate the physical limits of the BOS and evoke appropriate postural responses. 502 

The toes dictate the anterior limit of the BOS. Through plantar and dorsiflexor muscles 503 

activation we can control the posterior and anterior movement of the COM within the 504 

confines of the BOS, which is identified by these toe mechanoreceptors. Naturally we 505 

stand with our COM further toward the front of our foot lever (Winter, 1995), specifically 506 

over 60% of the load during stance is applied to the metatarsals and toes (Fernández-507 

Seguín et al., 2014) supporting the need for a density of receptors in the toes to define the 508 

contact limits. Similarly, the heel provides the initial contact site during gait and dictates 509 

the posterior boundary of the BOS; however, unlike the toes, the heel is not a segment 510 
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that can be independently manipulated to control the COM. The increased distribution of 511 

cutaneous afferents in the toes compared to the heel may reflect the postural significance 512 

of feedback from the toes in the control of standing balance. In the frontal plane, the 513 

lateral border of the right and left feet defines the boundary of the BOS. If the COM 514 

moves beyond the lateral BOS, a stepping reaction is required to prevent a fall (McIlroy 515 

and Maki, 1996). In contrast, a medial movement of the COM is relatively less 516 

threatening to balance due to the support of two legs. FAI afferents have been shown to 517 

have strong synaptic coupling to lower limb motor neurons (Fallon et al., 2005), and the 518 

relatively large population of FAI afferents in the toes and lateral foot sole border may 519 

help facilitate reflexive loops important in balance control. In fact, increasing cutaneous 520 

feedback from the foot sole border has been shown to increase the COM-lateral BOS 521 

stability margin in older adults (Perry et al., 2008). Furthermore, activation of location 522 

specific skin regions on the sole of the foot has been shown to modulate muscles of the 523 

lower limb to facilitate gait (Zehr et al., 2014). This very direct evidence supports the 524 

notion that the individual mechanoreceptors have a significant role in spinal reflexes to 525 

control the magnitude of muscle activation for successful ambulation. With pressure 526 

distribution across the foot during walking that travels from heel to the great toe, while 527 

favouring greater pressure on the lateral border (Buldt et al., 2018) the density and 528 

distribution of receptors in these regions makes inherent sense for this dynamic control of 529 

movement.  530 

 531 

Future considerations 532 



 24 

Collectively, the studies and data highlighted in this review enhance the 533 

understanding of foot sole cutaneous afferent firing thresholds and receptive field 534 

distribution and density, that together help shape how the foot sole is viewed as a sensory 535 

structure. Continued investigations into the foot sole skin is needed to understand the 536 

contribution of class specific and integrated foot sole cutaneous feedback in balance 537 

control. Some directions for future steps include the histological study of cutaneous 538 

afferent innervation of the foot sole and structure of the mechanoreceptor endings. How 539 

do they compare to hand mechanoreceptors? Measurements of the number of Aβ fibres 540 

innervating the foot sole would provide more accurate estimates of the mechanoreceptor 541 

innervation density. How accurate is the estimated innervation ratio of 10 times fewer 542 

foot sole afferents compared to the hand? Foot sole mechanoreceptor morphology may 543 

adapt in response to the larger forces associated with standing balance and gait. 544 

Understanding how foot sole cutaneous afferents respond under loaded conditions is 545 

critical to assign functionality to cutaneous feedback in postural control. Vibration 546 

perception thresholds have recently been shown to be elevated in a standing compared to 547 

sitting posture (Mildren et al., 2016), however the behaviour of the underlying 548 

mechanoreceptors in different loading conditions is unknown. Therefore, future work is 549 

needed to investigate firing characteristics of foot sole afferents under loaded, and more 550 

functionally relevant conditions.  551 

 552 

Summary and conclusions  553 

The foot sole is a critical sensory structure, often our only contact with the environment 554 

during upright stance. In this review, we combined datasets with unpublished recordings 555 
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to provide a collated and detailed view of the cutaneous innervation of the foot sole. By 556 

combining data sets we are able to highlight significant functional differences in the skin 557 

of the foot, as compared to the hand. Our principal novel finding was the observation that 558 

there is unequal distribution of afferents across the foot sole. Similar to the hand 559 

(Johansson and Vallbo, 1980), a proximal (heel) to distal (toes) increase in afferent 560 

density was found. In addition, the data supports a higher density of afferents on the 561 

lateral border of the foot sole compared to the midline or medial border. Afferent firing 562 

thresholds did not show the same proximal-distal or medial-lateral distribution pattern, 563 

although the heel was the least sensitive location as well as being the least densely 564 

populated area. It is well established that in situations where cutaneous feedback is 565 

impaired experimentally (Meyer et al., 2004b) or naturally with age (Peters et al., 2016) 566 

and disease (Prätorius et al., 2003) balance impairment are prevalent (Kars et al., 2009). 567 

Advances have been made in the development of sensory augmentation devices as a 568 

strategy to improve standing balance. These developmental intervention strategies have 569 

attempted to improve the quality of foot sole cutaneous feedback through specialized 570 

shoe insoles (Perry et al., 2008; Lipsitz et al., 2015). However, optimizing these 571 

interventions requires an understanding of the underlying cutaneous mechanoreceptor 572 

afferents; notably their capacity to provide functionally relevant feedback (Parker and 573 

Newsome, 1998). The toes and lateral boards of the feet are important regions for balance 574 

control as they delineate the borders of the base of support. The observed afferent 575 

distribution and firing thresholds are thought to reflect the functional role of the foot sole, 576 

where tactile feedback from the toes and lateral border may be more meaningful for the 577 

control of standing balance. These data significantly advance how the foot sole is viewed 578 
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as a sensory structure, however future work is needed to investigate the firing 579 

characteristics of cutaneous afferents under loaded and more natural conditions. 580 
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Figure captions:  836 
 837 
Figure 1. An illustration of the human microneurography technique. (A) Top: Schematic 838 
of experimental setup for recording from the tibial nerve at the level of the knee 839 
(popliteal fossa). Two tungsten microelectrodes are inserted percutaneously with one 840 
serving as the reference electrode inserted beneath the skin near the nerve, and the other 841 
serving as the active electrode which gets inserted into the nerve. Bottom: Schematic of a 842 
peripheral nerve, showing the active electrode’s placement into an individual nerve 843 
fascicle, right up next to a single axon (i.e., intrafascicular extracellular recording). (B) 844 
Sample recording from an FAI afferent showing, from top to bottom, the instantaneous 845 
firing rate, raster plot, raw neurogram, and vibrator acceleration for the case of 30 and 846 
250 Hz vibration. As expected based on the FAI bandwidth, this unit codes precisely for 847 
the 30 Hz vibration with a phase-locked 30 Hz spike train but fails to be activated by the 848 
250 Hz stimulation. Inset left: sample of phase-locking in the FAI response with the time 849 
scale expanded. Inset right: 100 overlaid spikes (Note: the double-peaked action potential 850 
morphology indicates that the microelectrode has not caused conduction blockage; see 851 
(Inglis et al., 1996). 852 
 853 
Figure 2. Receptive fields of the different cutaneous mechanoreceptor classes. Top: Foot 854 
sole maps for each afferent type showing all the receptive field locations and estimate of 855 
size in the present data set. Grey ellipses represent individual afferent receptive fields. 856 
Bottom: Composite foot sole map showing the center of all receptive fields overlaid on 857 
the same foot template. Additionally, a pie chart depicts the breakdown in terms of the 858 
percentages of each afferent type in the present data set. 859 
 860 
Figure 3. Foot sole area measurement. We measured the surface areas of 9 different 861 
individual regions on the foot soles of 4 men and 4 women. On the left is the largest foot 862 
we encountered (male, age 25, U.S. men’s size 12 shoe), and on the right is the smallest 863 
(female, age 25, U.S. women’s size 6 shoe). The skin regions were traced from an optical 864 
scan of each individual’s right foot sole (light green outlines), and digital area 865 
measurements were made using ImageJ software. 866 
 867 
Figure 4. Mechanical thresholds for the different cutaneous mechanoreceptor classes. 868 
The mean (SE) threshold for evoking an action potential in the 9 different skin regions 869 
are given for all afferent types (A), FAI afferents (B), FAII afferents (C), SAI afferents 870 
(D), and SAII afferents (E). 871 
 872 
Figure 5. Receptive field sizes for the different cutaneous mechanoreceptor classes. The 873 
mean (SE) area of receptive fields in the 9 different skin regions are given for all afferent 874 
types (A), FAI afferents (B), FAII afferents (C), SAI afferents (D), and SAII afferents 875 
(E). 876 
 877 
Figure 6. Estimates of the relative and absolute density for the different cutaneous 878 
mechanoreceptor classes across the foot sole. (A) Depiction of the proximal-distal 879 
gradient in receptive field density, with greater innervation density in the toes (red), than 880 
in the metatarsals/arch (orange), and heel (yellow). (B) Depiction of the medial-lateral 881 
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gradient in receptive field density across the metatarsals, with greater innervation density 882 
in the lateral region (red), than in the middle (orange), and medial (yellow) regions. (C) 883 
Depiction of the medial-lateral gradient in receptive field density across the arch, with 884 
greater innervation density in the lateral region (red), than in the middle (orange), and 885 
medial (yellow) regions.  886 
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Table captions:  887 
 888 
Table 1: The cutaneous afferent contribution from published and unpublished sources 889 
making up the present data set  890 
 891 
Table 2: The number and percent of foot sole cutaneous afferent class monofilament 892 
firing thresholds and receptive field areas (mean, median, and range)  893 
 894 
Table 3: The distribution and innervation density estimate of cutaneous afferents across 895 
the foot sole  896 


