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INTRODUCTION
● C2C12 cells derived from murine muscle tissue is commonly used to study myogenesis. 

● Cell differentiation is part of myogenesis and can be induced through cell-to-cell contact or reduction of growth factors (GF)

Project Rationale: There is wide variation in cell culture protocols across the literature which differ greatly from American Type 

Culture Collection (ATCC) recommendations, despite the specific effects behind each culture condition not being clearly 

defined. 

RESULTS

DISCUSSION & CONCLUSIONS
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Figure 1. Process of myogenesis as illustrated by Zammit et al. (2006). 

Research Question: How will differentiation be induced by cell-to-cell 

contact vs reduction of GF effect C2C12 cells? 

Biomarkers of myogenesis:

● MyoD is translocated to the nucleus to act as a master regulator and 

transcription factor of muscle-specific genes 

● M-Cadherin is localized to the plasma membrane to mediate cell 

fusion prior to myotube formation

Sampling 

MyoD m-Cadherin 

Sample Preparation

Visualization / Quantification

Primer Efficiencies

M
el

t 
p

ea
k

MyoD primer efficiency is 163% (E= 1.636)
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M-cadherin primer efficiency is 124% (E=1.24)

Both MyoD and m-Cadherin only had one melt peak, indicating that only one product was amplified.
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Fig 2. MyoD expression 
relative to GAPDH expression 
in control and experimental 
groups at myoblast, days 0, 4, 
and 7.  Gene expression was 
measured using quantitative 
PCR and the Pfaffl method. 
The expression of MyoD was 
normalized to the expression 
of MyoD in MB. Control group 
had a n = 9, while all 
experimental groups had a n = 
3, except for 2% HS at 80% 
confluency group had n=2.
Mean +/- SEM: 
control: 0.944; 4.585
10%HS,100%con.: 0.787; 1.941
2% HS, 80% con.:0.826; 2.154
2% HS, 100% con.:  0.759; 
2.040
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MyoD was observed and is a 
master transcriptional regulator 

of muscle-specific genes.
M-Cadherin was observed and 
mediates cell fusion, allowing 

myotubes to form. 

Samples were fixed at each 
sampling day of 

differentiation (MB, D0, D4 
and D7) and permeabilized

RNA was isolated from 
cell pellets and 

assessed for quality and 
quantity

Fig 3. M-Cadherin expression 
in relation to GAPDH 
expression in control and 
experimental groups at 
myoblast, days 0, 4, and 7. 
Gene expression was 
measured using quantitative 
PCR and the Pfaffl method. 
The expression of m-Cadherin 
was normalized to the 
expression of m-Cadherin in 
MB. Control group had  n = 9 
and all experimental groups 
had n = 3, except for 2% HS at 
80% confluency group had 
n=2. 
Mean +/- SEM: 
control: 0.937; 4.212
10%HS,100%con.: 0.663; 1.742
2% HS, 80% con.: 0.780; 1.912
2% HS, 100% con.: 0.663; 
1.742
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Morphology 
● Earlier induction (i.e. 80% confluency) enhanced myotube formation
● Higher serum concentrations (i.e. 10% HS) promotes myotube formation 

but in less coordinated pattern

Relative Gene Expression
● MyoD: unexpected to peak on D4

○ Expression should stay stable throughout myogenesis
○ More information is needed from localization assessment 

● m-Cadh: consistent expression trend with literature (i.e. peak at D4)
○ Promoted levels of cell fusion on D4 were observed 
○ m-Cadh mediates cell interactions prior to fusion

● 2% HS at 80% confluency: the better culture condition out of all three 
○ produced thicker myotubes and gene expression data coincides with 

observed morphology 
○ Earlier induction (i.e. 80% confluency) using adult serum at higher 

concentrations (i.e. 10% HS) may enhance myotube formation  

Conclusion
This study shows that varying culture conditions at the onset of 
differentiation will have a significant effect on both the morphology and 
gene expression of C2C12 cells. Many myogenesis studies utilized culture 
conditions that deviated from what ATCC had recommended, which proves 
that data comparability across the literature involving C2C12 cell 
myogenesis to be a challenge. 

Fig 1. Phase contrast images of 
control myoblasts and 
experimental day 7 myotubes. The 
top panel is a myoblast plate 
grown in 10% FBS. The 3 bottom 
panels show day 7 myotubes 
grown in 2% HS at 80% confluency 
(largest myotubes, contraction 
observed), 2% HS at 100% 
confluency, and 10% HS at 100% 
confluency. All images were 
obtained using a mobile device at 
100x magnification. The purpose of 
these images was to visualize the 
effects of cell-to-cell contact and 
reduction of growth factors on 
myotube formation.
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