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Abstract: This systematic literature aims to identify soft computing techniques currently utilized
in diagnosing tropical febrile diseases and explore the data characteristics and features used for
diagnoses, algorithm accuracy, and the limitations of current studies. The goal of this study is therefore
centralized around determining the extent to which soft computing techniques have positively
impacted the quality of physician care and their effectiveness in tropical disease diagnosis. The
study has used PRISMA guidelines to identify paper selection and inclusion/exclusion criteria. It
was determined that the highest frequency of articles utilized ensemble techniques for classification,
prediction, analysis, diagnosis, etc., over single machine learning techniques, followed by neural
networks. The results identified dengue fever as the most studied disease, followed by malaria and
tuberculosis. It was also revealed that accuracy was the most common metric utilized to evaluate
the predictive capability of a classification mode. The information presented within these studies
benefits frontline healthcare workers who could depend on soft computing techniques for accurate
diagnoses of tropical diseases. Although our research shows an increasing interest in using machine
learning techniques for diagnosing tropical diseases, there still needs to be more studies. Hence,
recommendations and directions for future research are proposed.

Keywords: medical decision support systems; soft computing; tropical diseases; medical records;
telemedicine; health science

1. Introduction

There is a growing reliance on computers for decision-making in various application
domains. These systems involve knowledge of an engineering process characterized by
imprecision, vagueness, and approximate reasoning. This has necessitated using soft-
computing techniques that model the human mind and are tolerant to uncertainty, partial
truth, approximations, and imprecision to achieve robustness, reliability, traceability, and
scalability [1]. Traditional computing develops exact models using symbolic logic and
numerical reasoning, while soft-computing techniques use approximate reasoning and
modeling [2]. The potential of soft computing techniques to identify and model meaningful
relationships/patterns in a data set has made them very useful in medical diagnosis,
treatment, outcome prediction, and other clinical scenarios. However, most research on
the application of soft computing, and in particular, machine learning (ML) techniques, in
medical diagnosis have focused on analyzing imaging results [3–5]. Also, more emphasis
has been placed on common diseases such as diabetes [6] and cancer [7]. ML techniques
are a class of soft computing techniques that enable computer programs to automatically
improve their performance of some tasks through experience [8].

Medical diagnosis involves the determination of a disease or condition by analyzing
the patient’s symptoms and signs [9]. Laboratory tests, radiology, biopsy, endoscopy, and
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others are often used to diagnose diseases. Some medical experts have also explored com-
puterized medical diagnoses like computer tomography (CT scan). These approaches have
brought about a tremendous improvement in medical diagnosis and the health domain
in general. Tropical diseases reproduce rapidly in hot and humid weather and are mostly
infectious diseases [10]. Tropical regions experience heavy rainfall, high temperature, and
high humidity. These conditions provide a conducive ambiance for pathogenic or infectious
agents to breed, affecting and influencing the living organism. Some infectious agents that
cause these diseases are parasitic worms (helminths), viruses, bacteria, and protozoa. Infec-
tious agents can be transmitted to humans through an infected human, a vector (animal or
insect), or a vehicle (soil, plants, cloth, water, food, etc.) [11,12]. Tropical disease comprises
communicable and non-communicable diseases, diseases caused by nutritional deficiencies
or environmental conditions, and genetic disorders in these regions [13]. Common tropical
diseases include malaria, diarrhea, typhoid fever, measles, lassa fever, tuberculosis, yellow
fever, dengue fever, Ebola, Marburg virus, COVID-19, measles, pneumonia, hepatitis, zika
virus, and influenza. The confusable nature of tropical diseases and the complications of
diagnosing and managing these diseases creates a burden on frontline health workers in
low-to-middle-income countries.

We aim to address this issue by developing a decision support system (DSS) based
on soft computing techniques. This study allows us and other researchers with similar
intentions to review the existing efforts in this domain. This study, therefore, attempts
to examine the application of ML and other soft computing techniques in diagnosing
tropical diseases. It is an extension of a previous study [14] that addressed five research
questions relating to the application of soft-computing methods in diagnosing tropical
diseases based on studies published between 2008 and 2017. Our current study covered the
period 2009–2020. It also distinguishes between ML and other soft-computing techniques.
It considers additional questions relating to data characteristics, sample sizes, demographic
concentrations of ML systems, public availability of data, and efficiency of algorithms.
The specific objectives of our study, therefore, include: (i) review the soft computing
methods employed in the diagnosis of tropical diseases, (ii) determine the tropical diseases
commonly diagnosed (and their features) using ML and other soft computing methods;
(iii) understand the effectiveness of the algorithms, and iv) explore the limitations of
the research efforts in the use of soft computing methods for tropical disease diagnosis.
The paper is organized as follows: Section 2 presents the review of related literature on
soft computing applied to diagnosing tropical diseases, while the research methodology is
described in Section 3. The results are presented and discussed in Section 4, and conclusions
are drawn in Section 5.

2. Related Works

In this section, we discuss related work on soft computing technologies and ML
systems’ application to the diagnosis of diseases in general. We also review the literature
focusing on tropical disease diagnoses.

A. Soft-computing technologies used for disease diagnosis: The first effort at developing
decision support tools for medical diagnosis started with the application of statistical
techniques for medical diagnosis, introduced by Lipkin, Hardy, and Engle in the
1950s [15]. By the early 1970s, the ML tools created for medical diagnosis showed
evidence that statistical tools were not capable of handling complex clinical prob-
lems [16]. They laid the foundation for exploring artificial intelligence (AI) concepts
in medical diagnosis. This era began with Kulikowski’s exertions in 1970 [17], which
were directed at deviating from engineering approaches to intense attention of the
‘cognitive model’. Kulikowski explored the physicians’ reasoning procedures and
perception in medical diagnosis [18]. Pattern recognition techniques focused on the
application of AI in medical diagnosis up until Shortliffe published the first rule-based
method for therapy recommendation in infectious diseases in 1974 [19]. Rule-based
programs utilize the “if-then rules” in series of inferences to make conclusions. How-
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ever, it was later observed that rule-based systems were only effective in facile medical
domains because most critical diagnostic problems were so extensive and convoluted.
Forthright attempts to link together comparatively large series of rules resulted in
significant difficulties; hence, such systems were deficient of clinical reasoning [20].
As research in the application of soft computing in medical diagnosis evolved, the
attention shifted to the depiction and application of imprecise, dynamic, and un-
structured knowledge. The sources of information obtainable in medical DSS are
characterized with imprecision and uncertainty [21,22]. These sources comprise the
physician, laboratory, patient and additional technical evaluation approaches, as well
as the mathematical models that mimic the diagnostic process; thus, making medical
DSS researchers turn to soft computing approaches to handle imprecision and uncer-
tainty in medical diagnosis [23]. It has been shown in [24] that AI could significantly
increase frontline health workers’ diagnostic effectiveness and efficiency, especially
in rural communities. A few medical decision support models have attempted to
provide diagnostic advice without a physician [25–27]. However, these systems are
largely ineffective for diagnosing tropical febrile diseases due to: (i) soft focus on
tropical conditions, (ii) poor handling of confusable symptoms, (iii) unfriendly user
interfaces, (iv) high reliance on internet availability, and (v) non-consideration of
asymptomatic factors.

B. Tropical disease diagnosis using ML algorithms: The tropical zones of the world are
more susceptible to infectious diseases than the temperate part of the world. The
primary reasons why infectious diseases thrive in the tropics are due to biological
and environmental influences that hold up a range of vectors, pathogens and hosts,
and social drivers that weaken attempts to manage these diseases. These infectious
diseases, also known as tropical diseases, are predominant in tropical regions [28].
Several tropical (especially febrile) diseases present symptoms that are very much
alike, thus making these diseases “confusable.” These diseases are of immense con-
cern to physicians, medical institutions, and the community as a whole due to the
complexities of the conditions they present in early diagnosis and their mortality
rates. Therefore, the use of soft computing and ML algorithms can help to prevent
any misdiagnosis.

Examples of medical areas where ML techniques have been applied include:

• Care management of febrile diseases
• Finding host relationships in the cell
• Diagnosing

In the following sections, we discuss works relating to the above-mentioned categories
and the differences between our work and others.

Care management of febrile diseases: Keitel et al. [29] studied the need for innovations
for efficient diagnostic assessments and appropriate management of febrile children in
primary care. They summarize existing Electronic clinical decision algorithms (eCDAs) to
provide an overview of their validation degrees. They conclude that eCDAs are valuable
tools that can improve the management of febrile disease and boost the reasonable use of
diagnostics and antimicrobials. They show that the next steps in the evidence pathway
should continue integrating clinically useful diagnostic and treatment innovations.

Finding host relationships in the cell: Agany et al. [30] explore the concepts of ML and
data mining toward understanding vector-host pathogen relationships such as adaptation
and pathogenicity. Twenty-five studies involved predictive models using supervised ML
from the review articles. In contrast, 14 of the studies used unsupervised methods and
deep learning. Classifying and predicting pertinent features that determine interaction
outcomes were among the most dominant machine-learning tasks in the retrieved articles.

Diagnosis: The following includes a list of the commonly diagnosed diseases using
soft computing techniques:

Malaria: Malaria is an acute and deadly disease attributable to a parasite that normally
infects a particular type of mosquito, which feeds on humans. Malaria is a well-known
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cause of morbidity and mortality in tropical regions [31]. People with malaria are generally
very sick with symptoms including fever, fatigue, chills, muscle pain, and shivering.
Poostchi et al. [32] wrote a survey article on image analysis and ML techniques to bring up-
to-date and cutting-edge developments in automated malaria diagnosis with image analysis
and ML. They showed that with the advent of new deep learning approaches, the research
sees a thrilling growth that can be considered revolutionary. Although considerable articles
have been published in this area, Pootschi et al. believed it would render many of the
former classification approaches dispensable. They also discussed that a lot of the cell
segmentation techniques presented so far could soon become obsolete, and deep learning
could be a promising tool. Given these developments, automated microscopy will present
an easy, inexpensive, and reliable approach to diagnosing malaria.

Regarding the diagnosis of malaria fever using ML models, Oguntimilehin et al. [33]
also reviewed the predictive models for the diagnosis and treatment of malaria fever. They
showed that the shortage of laboratory equipment and hospitals led to many annual deaths.
The study revealed that computer-based predictive models with symptoms or images of
malaria parasites generated better ways to diagnose and treat malaria fever. However,
most of the predictive models provide a diagnosis without therapy, and most researchers
failed to evaluate the accuracy of the models. They concluded that researchers could work
on symptomatic environment mobile applications so that many people could access them.
Boruah et al. [34] studied the data mining applications in malaria prediction. Based on
the related work, they categorized the application of ML in healthcare into Treatment
Effectiveness, Healthcare Management, Fraud and Abuse, Medical Device Industry, System
Biology, Hospital Management and Pharmaceutical Industry. They also classified data
mining tools and techniques into Classification, Clustering, Association Rule Learning,
Regression, Anomaly Detection, Summarization, Time Series Analysis, Prediction Task,
and Sequence Discovery.

Dengue Fever: Dengue (or dengue fever) is a disease caused by mosquito bites as well
as one of four types of dengue viruses and is a severe global health issue [35]. Dengue fever
presents serious flu-like symptoms and can result in death in extreme cases. There are no
vaccines against dengue fever. Therefore, soft computing poses as a better diagnostic tool.
The following includes a list of literature reviews that discuss the use of soft computing
and ML in disease diagnosis. Dengue fever is one of the most studied tropical diseases
when applying ML models for diagnosing. Iqbal et al. [36] studied an outlook on ML for
dengue outbreak prediction. They first studied all the related research work in dengue viral
predication. They then proposed the development of an innovative ensemble classifier
for predicting dengue fever outbreak. Sundari et al. [37] analyzed various dengue factors
and reviewed research papers to identify the data mining models used to predict dengue.
Considering various factors like temperature, sunshine, and rainfall, they concluded that
the risk of dengue fever is linked with high temperature and is inversely related to the
periods of rain and sunshine. Sivaprasad et al. [38] used the network analysis method
to review articles related to early warning systems for the dengue fever outbreak. They
performed a cluster analysis on the citation network using Gephi: a network analysis
and visualization tool. The majority of articles fall into two clusters based on the graph:
(1) the effect of climate change on mosquito-borne diseases, and (2) studies including
dengue research. Ahmed et al. [39] presented a systematic review of soft computing
techniques used for the identification of dengue fever and possible solutions to overcome
it. The article first discussed whether expert systems correctly identify dengue fever and if
knowledge-based expert systems fulfill the requirements. Finally, they discussed whether
the interfaces of expert systems are user-friendly for all types of users or not. To address the
mentioned goals, they concluded that although most of the works correctly diagnose the
diseases, the role of knowledge-based models, which consist of two elements: diseases and
their symptoms, are essential for determining disease and predicting medical suggestions
related to the particular disease. Finally, they suggested that based on existing articles,
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user interfaces should be well-formed to convey knowledge according to the user’s mental
model to have a user-friendly system.

Tuberculosis: The bacterium called mycobacterium tuberculosis causes tuberculo-
sis [40]. The bacteria typically affect the lungs but can also affect other parts of the body,
and not every infected person becomes sick. The following are the techniques used to
diagnose this disease: Weiner et al. [41] have reported recent developments in the high
throughput detection of tuberculosis. High-throughput methods aim to identify new
biomarkers that help diagnose, treat, and prevent TB. Several studies have shown that
tuberculosis manifests itself on different levels. They concluded that studies in other co-
horts are needed to allow for meta-analyses and the construction of concise, universal, and
predictive tuberculosis biosignatures. In another study, Doshi et al. [42] discussed how
ML could transform the management of tuberculosis. ML’s integration into new software
promises enabled users to benefit from artificial intelligence-enabled pattern recognition
software to personalize a patient’s care plan or customize training materials. They con-
cluded that mobile health approaches significantly impact products, and products must
stay abreast of advancing technology over time.

Typhoid Fever: Typhoid fever is an infection caused by bacteria that can spread
all over the patient’s body, affecting several organs and without rapid treatment, can
result in serious complications and even death. Typhoid is caused by a bacterium called
Salmonella typhi [43], that is related to the bacteria that cause salmonella food poisoning.
Oguntimilehin et al. [44] performed a literature review on Computer-Aided Diagnostic
Systems for Managing Typhoid Fever. Their study showed that typhoid fever is widespread
in developing countries and is associated with many deaths. They suggested that if the
developed system does not satisfy all of the factors mentioned in the paper, it may not
be desirable to be used in the health sector. Finally, they suggested that the systems’
accessibility could be improved by making them web-based or mobile-based. None of the
above-mentioned related works comprehensively studied all the different types of tropical
diseases. This study covers most tropical diseases worldwide and the ML models used to
diagnose them.

Others have done systematic reviews on tropical diseases. Akinsolu et al. [45] pre-
sented a systematic review on the emerging resistance of neglected tropical diseases (NTDs)
by identifying the frequency of drug resistance for 11 major NTDs between 2000 and
2016 as well as 20 drugs for treatment within a specific period by analytically examining
socio-demographic factors, resistance, and countries of relevant studies. Boyce, Katz, and
Standley [46] conducted a systematic review of the Web of Science and PubMed databases
to assess the risk factors for infectious diseases in the urban environments of sub-Saharan
Africa. Elduma et al. [47] conducted a systematic review on dengue virus seroprevalence
in Sudan and estimate the disease burden through meta-analysis. The focus of these stud-
ies is different from our work. Our study addresses questions that are not addressed in
previous reviews.

3. Materials and Methods

In this section, we discuss the research methodology used in this study. First,
Section 3.1 summarizes the steps we followed to review the literature. In Section 3.2,
we discuss the study goals and our research questions. Later, Section 3.3 elaborates on our
article selection strategy; Section 3.4 describes the final pool and repository of the papers
we utilized in this study.

3.1. Overview

This systematic literature review (SLR) followed the guidelines introduced by Kitchen-
ham and Charters [48], including the following main steps:

1. Planning the review:

• Identifying the need for a review.
• Specifying the research questions.
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• Developing a review protocol.
• Evaluating the review protocol.

2. Conducting the review:

• Identification of research.
• Selection of primary sources.
• Quality assessment.
• Data extraction and monitoring.
• Data synthesis, Meta-Analysis (MA)

After carefully reviewing the existing literature outlined in Section 2, we identified
the gaps and the need for this review. We then specified research questions (RQs) to cover
these gaps, which are explained in Section 3.2. The review process was recorded using the
updated Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines [49]. The PRISMA flow chart in Figure 1 shows the systematic review’s search
results and selection procedure. The PRISMA checklist is provided in the Supplementary
Information. The process starts with article selection (discussed in Section 3.3). We first
identify the papers based on the defined inclusion and exclusion criteria. We then finalize
our paper pool and follow the data extraction and synthesis steps.

Figure 1. PRISMA flow chart illustrates the article search and the inclusion process.

3.2. Goal and Research Questions

This research aims to identify the extent to which soft computing techniques such
as ML models have positively impacted the quality of care that medical physicians can
provide and the direct impacts on processes and outcomes related to the respective patient’s
diagnosis of tropical diseases. Additionally, this research determines the causation behind
the concentration and adoption of soft-computing techniques from region to region.
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This research is a systematic literature review that aims to identify best practices with
respect to specific procedures, technologies, methods, or tools by aggregating information
from comparative studies.

The scope of our SLR study is to identify, analyze, and synthesize work published
during the past ten years (from 2010 to 2020) in soft computing techniques with a focus on
tropical disease diagnosis. Based on our research goal, we have formulated the following
six RQs:

• RQ 1—What soft computing techniques are adopted for tropical disease diagnosis?
• RQ 2—What types of diseases are current ML systems used for?
• RQ 3—What are the characteristics of the data used for validating tropical diseases?
• RQ 3.1—What are the common sample sizes used in the studies?
• RQ 3.2—What are the current demographic concentrations for ML systems?
• RQ 3.3—What are the geographical regions covered in the studies?
• RQ 3.4—Do the validation samples contain records of both patients and non-patients?
• RQ 3.5—Is the data publicly available?
• RQ 4—What features (symptoms and characteristics) have been used for each type

of disease?
• RQ 5—How efficient are the algorithms relative to the specific diseases and symptoms;

how predictive are these algorithms?
• RQ 6—What are the critical limitations reported in studies related to tropical diseases?

3.3. Article Selection

This section briefly discusses the source article selection and search keywords used in
this study and the process of applying the inclusion/exclusion criteria.

1. Source selection and search keywords: This review employs the use of the following
digital and grey libraries for the search results: (1) Google Scholar 1, (2) ACM Digital
Library 2, (3) PubMed 3, (4) Science Direct 4, and (5) Digital Object Identifier (DOI)
Registration Agency 5. These search engines have been used in other similar studies.
We used the Publish and Perish [50] tool to extract the papers. We also manually
searched for the other databases (such as ACM and Science Direct) that were not
supported by Publish and Perish.

The set of search terms was devised systematically and iteratively, i.e., we started
with an initial set and repeatedly improved the set until no additional significant papers
could be found to enhance our pool of primary studies. Considering the above aspects, we
formulated our search query, as shown in Table 1. Logical operators AND/OR were used
to link the search keys with the respective synonyms. The OR operator is utilized within a
group, while AND is utilized amongst groups to reduce the risk of omitting relevant studies;
we manually checked if we included references found in the studies within the pool.

Table 1. Search keywords.

(“Machine learning” OR “Computer-aided” OR “Neural Network” OR “Fuzzy Logic”) AND (Tropical OR
Neglected) AND (Febrile OR Fever) (“Machine learning” OR “Soft Computing” OR “Decision Tree” OR
“Decision Support System”) AND (Tropical OR Neglected) AND (Febrile OR Fever) (“Machine learning”)
AND (“Yellow fever” OR “Dengue fever” OR “AIDS” OR “Ebola” OR “Marburg virus” OR “Lassa fever” OR
“Measles” OR “Rubella (German Measles)”) (“Machine learning”) AND (“Meningococcal infection” OR
“Leptospirosis” OR “Melioidosis” OR “Escherichia coli” OR “Tuberculosis” OR “Hansen’s disease” OR
“Malaria” OR “Cerebral malaria”) (“Machine learning”) AND (“Hantavirus” OR “H1N1” OR “Encephalitis”
OR “Meningitis” OR “Cholera” OR “Scrub typhus” OR “Typhoid fever” OR “Rickettsia infections”)
(“Machine learning”) AND (“Leishmaniasis” OR “Schistosomiasis”) (“Machine learning”) AND (“Diagnosis”
OR “Consultation” OR “Assessment”) AND (Tropical OR Neglected) AND (Febrile OR Fever) AND
(“Symptoms”) (“Machine learning”) AND (“Information” OR “Record” OR “Informatics”) AND (Tropical OR
Neglected) AND (Febrile OR Fever) AND (“Symptoms”) (“Machine learning”) AND (“Performance” OR
“Effectiveness” OR “Efficiency”) AND (Tropical OR Neglected) AND (Febrile OR Fever) AND (“Signs”)
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We also extracted the names of active researchers from the initial papers found in the
search engines listed above in their corresponding fields of interest. Table 2 shows the total
number of available articles using the mentioned keywords.

Table 2. Number of articles collected from each database.

Database Articles

Google Scholar 2130
ACM 1924
Science Direct 1600
PubMed 733
CrossRef 400

Total 6787

All studies found in the additional locations that were not in the pool of selected
studies but appeared to be a contender for inclusion were included in the initial pool. With
the above search strings and search in specific locations, we found 268 studies, which we
regarded as our initial pool of possibly relevant studies (also depicted in Figure 1). At this
stage, papers in the initial collection were ready for the application of inclusion/exclusion
criteria as described in the next unit.

2. Application of inclusion/exclusion criteria:

In our study, the following inclusion criteria were considered during the literature review:

• Relevance of the topic of each study to the tropical disease diagnosis concepts
• The level of comprehensiveness and evaluation followed in the study
• Whether the study was peer-reviewed

If several studies with identical titles by the same author(s) were found, the most
recent study was included, and others were excluded. Only studies written in the English
language within ten years (2010–2020) and those that were electronically available were
included. Only the latter were included if a conference study had a more recent journal ver-
sion. The relevance of each candidate study to the tropical disease diagnosis was carefully
considered. All searches will be based on (1) Title, (2) Keywords, and (3) Conclusion. We
also reviewed the introduction for some articles in which the data could not be inferred
from the mentioned sections. Provided that these items corresponded with our criteria
following analysis, the full text was obtained for further reading and data extraction.

In this study, the following exclusion criteria were considered during the literature review:

• Conference/poster abstract
• Duplicate instances of the same study
• Focus of the study does not answer RQs
• Focus is not ML for tropical disease
• Not written in English

It should also be noted that the online repository of papers (https://doi.org/10.528
1/zenodo.7243308, accessed on 25 November 2022) in our pool contains a comprehensive
explanation of why each article has been excluded from the primary pool (refer to the
“Excluded” tab).

https://doi.org/10.5281/zenodo.7243308
https://doi.org/10.5281/zenodo.7243308
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3.4. Final Pool of Articles and the Online Repository

Following the initial search and analysis for the exclusion of unrelated studies along
with the inclusion of additional articles, the pool of selected articles became 268. Based on
our exclusion criteria, 6787 papers were excluded, of which 1420 were conference abstracts,
910 were duplicates, 3075 studies failed to answer our RQs, 1047 of the papers’ focus were
not on diagnosing tropical diseases, nine were not written in English, and 58 were not
publicly available to download. The final pool of studies chosen has also been published in
our online repository. Table 3 shows the number of papers in the collection by their year
of publication.

Table 3. Total Number of papers collected per year.

Year Total of Papers

2010 6
2011 13
2012 11
2013 15
2014 9
2015 21
2016 25
2017 33
2018 46
2019 41
2020 40

4. Results and Discussion

A. RQ 1—What soft computing techniques are adopted to diagnose tropical diseases?

This section summarizes the soft computing techniques covered in the studies, which
were classified into 12 categories (Figure 2): Ensemble (EN), Regression (REG), Support
Vector Machine and Support Vector Regression (SV), Fuzzy Logic (FL), Decision Tree (DT),
Neural Network (NN), Evolutionary models (EV), Bayesian (BN), K-nearest Neighbors
(KNN), K-means (KM), Probabilistic Reasoning (PR), and Other. The techniques that were
categorized as ‘Other’ did not specify an exact algorithm used in the article. The various
categories of techniques in the studies and their respective frequencies are illustrated in
Figure 3. The highest percentage of the articles in this work used ensemble techniques for
classification, prediction, analysis, diagnosis, etc. This is due to the robustness of ensemble
techniques and their ability to achieve much better performance than a particular soft
computing technique. The NN was the second highest due to its ability to identify hidden
patterns, learn unceasingly, and enhance its capability in the process. Support Vector
machine was the third highest, followed by fuzzy logic, regression techniques, decision
tree, etc. The central thought about ensemble approaches is that a collection of algorithms
will produce a more robust model [5]. Comparative analyses show that ensemble models
outperform individual machine-learning algorithms [51,52]. Clinical investigators employ
NN models in diagnosing and predicting clinical outcomes because of their suitability
in modeling relationships between variables [53]. NNs have proven their potential in
classification tasks, especially with the best results on various image classification tasks.
SVM is best appropriate for labeled datasets and is one of the powerful algorithms widely
utilized for regression and classification analysis [54]. We conducted further analysis of the
soft-computing techniques in terms of the frequency of algorithms used, the goal of the
study—prediction, classification, analysis or evaluation, and usage trend over the period
under consideration.
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Figure 2. Frequencies of soft computing techniques covered in the studies.

Figure 3. Frequency of Algorithm Goals covered by all studies.

Figure 3 shows the goals of the algorithms used in the study, such as prediction, classi-
fication, analysis, and evaluation as well as their respective frequencies. Of the algorithms
used in the study, 63.4% handled prediction, forecasting, and prognosis (categorized into
one group); this category focused on the prognosis and prediction of diseases such as
malaria, typhoid, dengue fever, and other tropical diseases [55–57]. The second category
(27.2%) grouped articles with algorithm goals like identification and classification of dengue
fever and other tropical diseases [58–60]. The third category (6%) had the following goals:
analysis of dengue fever, screening, and examining malaria, etc. [61,62]. The final 3.4%
of grouped articles compared mosquito-borne disease episodes [63]. To have a logical
basis for comparing machine-learning techniques with other soft-computing techniques,
we grouped all the machine-learning methods into one group separate from the other
soft-computing techniques.

We then found the average of the frequencies for the ML techniques (ML). Other soft-
computing methods include fuzzy logic (FL), evolutionary models (EV), and probabilistic
reasoning (PR), and the techniques that did not fall within these categories were grouped
into a class called “Other.” Figure 4 shows the trend line of the soft computing techniques
(ML, FL, EV, PR, Other), the year of publication of all the studies, and their respective
R2 values (0.8384, 0.0005, 0.0734, 0.0935, and 0.6157). The results showed that 83.8% of the
ML data fit the regression model, and the trend line showed an increase in the usage of
ML techniques and their application in the prediction and prognosis of tropical diseases.



Trop. Med. Infect. Dis. 2022, 7, 398 11 of 25

0.05% of FL data fit the regression model, and those non-soft computing techniques are
categorized as ‘Other’. Of the data, 61.57% fit the regression model, implying that non-soft
computing techniques are also applied in the prediction and prognosis of tropical diseases.
Lastly, 7.34% of EV data and 9.35% of PR data fit the regression model, indicating that these
two techniques are seldom used in this research area.

Figure 4. The frequency of soft computing techniques covered by all studies.

B. RQ 2—What types of diseases are current ML systems used for?

To answer this research question, this section first explores disease frequency covered
by all of the studies, then focuses on the frequency of the ML models used for diagnosing
each disease.

Figure 5 shows the total number of diseases covered. As shown, dengue fever, with
107 studies, is the most studied disease among all tropical conditions. Malaria and tubercu-
losis are also the second and third most frequently studied diseases, with frequencies of
49 and 43, respectively. According to Rupali [12], malaria and tuberculosis are significant
infections in the tropics, and the varying rainfall patterns and upsurge in temperatures
have resulted in creating a suitable environment for vector-borne diseases, specifically,
dengue and malaria.

Figure 5. Frequency of diseases reported in the study.
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Figure 6 shows the distribution of algorithms used for diagnosing the studied tropical
diseases such as Tropical Disease (TD), Dengue Fever (DF), Tuberculosis (TB), Typhoid
Fever (TF), Yellow Fever (YF), Zika Virus (ZV), Lassa Fever (LF), etc. Some articles in the
algorithm distribution for diagnosis did not specify the tropical disease diagnosed but
generalized them as ‘tropical disease’, hence the tropical disease (TD) category.

Figure 6. Algorithms distribution for each disease.

Additionally, Figure 7 shows the trend line of the ML techniques (NN, SV, DT, BN,
KNN, KM, REG, and EN). Their respective R2 values (0.6633, 0.7841, 0.6527, 0.5701, 0.1814,
0.0333, 0.8371, and 0.7041) show that 83.71% of the regression techniques (REG) data fit the
model and the graph shows a steady rise in the use of regression techniques. Of the EN
data, 70.41% fit the regression model and the trend line shows a rise in ensemble techniques
due to their efficiency and robustness over other single ML techniques. Of the various data,
78.41% of the SV data, 66.33% of the NN data, 65.30% of the DT data, and 57.01% of the BN
data fit the regression model. In addition, 18.14% of the KNN data and 3.33% of the KM
data fit the regression model. This clearly shows the trend in the usage of ML techniques
over a period of eleven years (2010–2020) and can further guide researchers on the most
utilized techniques when it comes to decision-making in the medical domain.

Figure 7. ML techniques covered by all studies.
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C. RQ 3—What are the characteristics of the data used for validating tropical diseases?

We subdivided this research question into sub-questions based on the following
sample characteristics: sample sizes, sample demography, geographic regions covered,
control sample (patients vs. non-patients), and public availability of study data.

1. RQ 3.1—What are the common sample sizes used in the studies?

A key attribute of ML techniques is that the accuracy of results improves based on
the quality and the size of the dataset. Based on the law of large numbers, the accuracy of
observations improves as the number of trials increases [64]. Moreover, the accuracy of ML
techniques usually improves as the sample size increases. Increasing the sample sizes or
using an adequate dataset for predictive model construction can result in better prediction
accuracy [65].

The predictive model constructed in [66] with a smaller dataset recorded the highest
error, while the models with more datasets recorded better accuracy. The method used
in [67], allocated higher weights to data points associated with larger sample sizes and
the weighted methods yielded a more accurate prediction. Table 4 specifies the range of
sample sizes used in all the articles of this study. Of the articles, 36 had small sample
sizes of less than 101 data points. Sixty-eight articles were within the 101–1000 sample
size range, 76 articles had sample sizes above 1000, and 88 of the articles did not indicate
any information about the sample sizes used. The dataset size is imperative, especially in
classification tasks, because some ML algorithms require small datasets while others need
large datasets to provide better accuracy. Rácz, Bajusz, and Héberger [68] illustrate the
effect of dataset size in multiclass classification and the findings clearly show the differences
in the dataset sizes and not just in the ML techniques applied. An experiment by Wang,
Fan, and Wang [69] shows a traditional ML technique performing better on small data sets
while the deep learning technique performs better on large datasets.

Table 4. Range of sample sizes used in all the studies.

Sample Size Frequency

1–30 9
31–100 27

101–1000 68
1001–5000 37

5001–10,000 14
Above 10,000 25
Not Specified 88

2. RQ 3.2—What are the current demographic concentrations for ML systems?

The demographic data used in the study were age, gender, and time frame. However,
219 articles, as illustrated in Table 5, did not specify the type of demographic data used.
Eighteen articles used time frame with a mean time frame of six and one-half years in
their studies. Fifteen articles used age and gender with the ages mostly ranging between
15 and 75 years. Another 15 of these articles used only age and one article used only
gender (female) in their prediction of dengue infection. According to [70], gender and age
comparisons depict dissimilar prevalence in a number of infectious diseases and different
immunological responses to infectious diseases and vaccines. Age (11%), gender (5.6%),
and time frame (6.3%) were the demographic information used in our study, but 77% of the
studies did not specify the demographic information used. Demographic information is
important in decision-making, especially in the medical field [71,72]. Wang, Berger, and
Xu [73] identify high-risk groups of patients with cancer, based on cancer types that are most
vulnerable to COVID-19 based on demographic factors. An algorithm by Pourhomayoun
and Shakib [74], predicted the mortality risk with demographic information, symptoms,
and patients’ physiological conditions.
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Table 5. Frequency of different demographics used in all the studies.

Demographic Frequency (%)

Age 11
Gender 5.6

Time Frame 6.3
Not Specified 77

3. RQ 3.3—What are the geographical regions covered in the studies?

The World Health Organization (WHO) divides the world into six regions [75], for
reporting, analysis, and administration. As shown in Table 6, in this study, 49 countries
were covered in all of the studies. Figure 8 shows the heat map for the frequency of
studied diseases based on WHO regions [75]. In this figure, the distribution of papers is as
follows: South-East Asia Region with 66 studies, Western Pacific Region with 58 studies,
African Region with 48, Region of Americas with 43, European Region with 16, Eastern
Mediterranean Region with 9, and 57 studies did not specify the region under study. Table 7
shows the total number of cases in the latest outbreak for each disease. Given the total
number of papers that studied each disease, we can see that although malaria had a more
significant number of cases in its outbreak in 2019, dengue is the most studied disease in
the literature whereas pneumonia is one of the least studied yet has the highest number of
cases. Several risk factors such as smoking, alcoholism, chronic medical conditions, chronic
obstructed pulmonary diseases, viral infections of the respiratory tract, immunodeficiency,
aging, and contact with contaminated hospital materials predispose an individual to
pneumonia [76,77] and most cases of bacterial pneumonia can be treated with over-the-
counter oral antibiotics [78]. This table can show the potential for studying each disease
and addressing the lesser-studied diseases such as pneumonia. Additionally, the total
number of articles correlates with the number of cases in recent outbreaks with a p-value of
0.006192. Therefore, the result is significant at p < 0.05.

Table 6. Countries of WHO Regions that are included in all of the studied articles.

Region Countries

African Region
(AFRO)

Nigeria, South Africa, Gambia, Uganda, Tanzania, Ethiopia, Central African Republic,
Zambia, Madagascar, Sierra Leone, Ghana, Senegal, Liberia.

Region of the Americas
(PHOTO) United States, Brazil, Colombia, Peru, Venezuela, Ecuador, Canada, Paraguay, Mexico.

South-East Asia Region
(SEARS) India, Indonesia, Thailand, Bangladesh, Sri Lanka

European Region
(EURO)

Turkey, Portugal, Kazakhstan, Israel, Finland, Moldova, Germany, Azerbaijan, Romania,
Belarus, Georgia.

Eastern Mediterranean Region
(MORE) Pakistan, Sudan, Iran

Western Pacific Region
(WPRO) China, Malaysia, Singapore, Taiwan, Vietnam, South Korea, Cambodia, Philippines, Japan
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Table 7. Most Recent Outbreaks of Diseases and the number of papers that studied them.

Disease Year Total Number of Cases (Million) Papers

Malaria 2019 229 49
Typhoid fever 2019 21 9

Dengue 2019 4.2 107
Tuberculosis 2019 10 43

HIV 2019 38 0
Leukemia 2016 60.3 1

Pneumonia 2019 150.7 2
Ebola 2016 28.616 4

COVID 19 2020 103.7 13
SARS 2003 8.096 1

Hepatitis B 2015 257 1
Hepatitis C 2015 71 0
Zika Virus 2018 1.8 4

Figure 8. WHO Regions Heat-map.

4. RQ 3.4—Do the validation samples contain records of both positive and negative patients?

According to the data, 14 studies did not specify any information about the positive
and negative cases. Eight studies used another type of dataset, such as climate, that cannot
be classified as either positive or negative. Among the remaining work, which indicate
both positive and negative cases, 234 studies only used the positive cases and only 12 used
both positive and negative cases. Figure 9 shows the percentage distribution of the studies.
The label “YES” indicates that the studies used positive cases, and label “NO” indicates
that the cases used both positive and negative cases. Labeled datasets are essential for
accurate decision-making, especially for supervised learning, which requires training of the
datasets. Supervised learning deduces a function from labeled training data comprising a
set of examples [79] for the accurate prediction of medical conditions [80]. Therefore, using
an evenhanded dataset for training and testing of a model increases the performance of an
ML model [81], but in the event of an imbalanced dataset, the confusion matrix can be an
effective evaluation criterion for measuring the performance of a model [82].
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Figure 9. Dataset classification based on positive and negative case records.

5. RQ 3.5—Is the data publicly available?

As shown in Figure 10, among all articles, 155 papers did not make their data public,
108 papers made the data publicly available or the data was provided by a referenced paper,
while 5 papers were provided as part of the data used.

Figure 10. Dataset availability percentages provided by the studies.

D. RQ 4—What features (symptoms and characteristics) have been used for each type
of disease?

As shown in Figure 11, the features and characteristics that were used in all the studies
could be categorized into three categories: symptomatic features, meteorological features,
and other features. Each study might have used more than one feature category in their
study, and the statistics are based on the overall features used in each category. It is also
worth mentioning that 12 studies did not specify the features used in their study. Each of
these categories includes subcategories, as discussed below.
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1. Symptomatic Features: 6 Symptomatic features were mainly included in the studies:
Fever, Aches, Central Nervous System (CNS), Gastrointestinal Tract (GIT), Respiratory
System (RSS), and General Malaise (GML). Among all of the studies, 69 included fever
and 60 included ache-related features, whereas CNS, GIT, RSS and GML were included
in 28, 17, 23 and 40 articles, respectively. Each subcategory is defined as follows:

• Febrile: Fever, Sweating, Shivering
• Aches: Headache, Muscle ache, Backache, Joint Pain
• CNS: Chills, Nausea, Delirium, Tiredness, Excessive Sleeping, Dizziness
• GIT: Vomiting, Diarrhea, Dehydration, Stomach Discomfort
• RSS: Abnormal Breathing, Coughing
• GML: Loss of Appetite, Yellowish Eyes, State of unwellness

2. Meteorological Features: Meteorological features mainly included humidity, rainfall,
temperature, month, wind speed, altitude, and climate. Overall, 120 studies included
weather data features.

3. Other Features: All other features are categorized as follows.

• Cell: Blood, Cell, URI, Hematocrit, Platelet, Protein, Gene, Genotype, Globulin, Albu-
min, and any other feature used in the body parts.

• Demographics: Age, Gender
• Image: Use of images of lungs as the input data and use of these image features to

diagnose disease.
• Other: Any other features that could not be categorized into the mentioned categories

Figure 11. Categories of features considered in the studies.

Among all these features included in the dataset, Table 8 shows the exact number of
features used by the studies for each feature.
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Table 8. Frequency of total features and used features.

Feature Used Features Total Features

Fever 69 69
Aches 60 60
CNS 27 27
GML 17 17
RSS 22 22
GIT 40 40

Weather 120 120
Image 34 36

Demographics 115 119
Cell 88 91

Other 40 40

In other words, not all of the features have been used to diagnose disease, and some
have been chosen among all features. The following are the features that are actually used
for diagnosing the diseases: Fever 69, Aches 60, CNS 27, GML 17, RSS 22, GIT 40, Weather
120, Image 34, Demographics 115, Cell 88, and Other 40 in these studies. Fever, Aches, CNS,
GML, RSS, GIT, Weather, and Other are the features that are used for diagnosis.

In order to see the correlation between the diseases and the features used in the
articles, we used a heat map to show the importance of each feature per disease, as shown
in Figure 12.

Figure 12. Heat Map of the diseases covered by the studies.
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E. RQ 5—How efficient are the algorithms relative to the specific diseases and symptoms;
how predictive are these algorithms?

Figure 13 shows the performance metrics reported. The articles categorized as “Not
Specified” gave a qualitative measurement of the approach used in their study. The
articles grouped as “Other” sparingly used performance metrics such as Oval, Pearson’s
r, G-mean [83], window frequency [84], Akaike’s information criterion (AIC), Bayesian
information criterion (BIC) [85], and Pearson correlation coefficient (PCC) in their studies.

Figure 13. Performance Metrics provided by the studies.

The highest proportion of the studies used the accuracy (ACC) metric to evaluate their
model. Accuracy is one of the most common metrics used to evaluate the predictive ability
of a classification model. It is easy to understand, and easy to use and implement with less
complexity [86,87]. Using the accuracy metric results in less optimal solutions because on
the limited ability to discriminate values [88] and can also yield misleading conclusions
when used with imbalanced data [89].

The second and third highest metrics used in the studies reported their performance
metrics as specificity (SPE) and sensitivity (SEN) metrics. Specificity measures the prob-
ability of a negative sample being classified or the fraction of negative patterns that are
correctly classified [86,90]. In comparison, sensitivity measures the probability of a positive
sample being classified or the fraction of positive patterns that are correctly classified [86,90].
Sensitivity and specificity metrics can be applied in stabilizing and optimizing the accu-
racy performance of an imbalanced class of two class problems [90]. The sensitivity and
specificity metrics could be merged into one metric (likelihood ratio) to estimate a patient’s
probability of having a disease [91]. However, a positive test result could contain many
false positive outcomes, which means that high sensitivity does not provide the basis for
informed decisions for one to conclude that a condition is present. Conversely, high speci-
ficity does not provide the basis for making informed decisions about whether a condition
is present or not [91,92].

The receiver operating characteristic curve (ROC) is a probability curve that summa-
rizes the performance of a model, and area under the curve (AUC) signifies the degree
of separability. The higher the AUC, the better the model is at prediction. AUC is a pop-
ular ranking-type metric, and its value indicates the overall ranking performance of a
classifier [87].

AUC is insensitive to class distribution and may provide ambiguous results when
ROC curves cross with each other [86,91].

For regression models, the mean square error (MSE) measures the difference between
the predicted solutions and desired solutions. A lower MSE value indicates a better fit
when evaluating a regression model. Root means square error (RMSE) is a frequently used
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metric in regression problems as it measures the difference between the value predicted by
a model and its actual value [88]. The smaller the RMSE value, the better the performance
of the model. One weakness of this metric is that a few significant errors in the sum may
generate a substantial increase in RMSE, hence RMSE is not an effective indicator of average
model performance and might be an ambiguous indicator of average error [93–95]. Table 9
summarizes the performance metrics of the algorithms relative to the techniques used in
the papers under study. Note that due to the differences in the datasets used in the papers,
the reported results from these papers cannot be used for identifying the outperforming
methods. Such a comparison requires more in-depth analysis.

Table 9. Efficiency of the algorithms.

Performance Metrics Techniques Frequency The Efficiency of the Algorithms

Accuracy (ACC)
BN, EN, FL, DT,

NN, SV, EV,
KNN, REG, Other

47.8% 85% of the studies had 75–100% accuracy, 13% of the studies had
51–74% accuracy and 2% of the studies had accuracy below 50%

Specificity (SPE) BN, PR, NN, EN,
REG, SV, KNN 14.6%

89% of the studies had specificity of 75% and above while the
remaining two studies had specificity of 69% and 12%,

respectively

Not Specified FL, EN, BN, KM,
NN, SV 7.3% N/A

Sensitivity (SEN)
SV, EN, NN, KNN,

BN, REG, DT,
PR

6.7%
94% of the studies had sensitivity of 75% and above while the
remaining 6% of the study had a sensitivity of between 69 and

72%

Root Mean Square
Error

(RMSE)

EN, REG, EN, SV,
NN, EV 4.8% 80% of the studies had RMSE below 0.95 and the remaining 20%

had MSE below 0.05

Mean Absolute Error
(MAE) EN, NN, REG 4.5% 69% of the study had a MAE value less than 20%, 23% had

values between 22 and 30% and 8% had above 77%

Area Under the Curve
(AUC) REG, EN, DT, SV 3.8% 90% of the studies had AUC above 80% and the remaining 10%

had an AUC of 73% and 65%

Mean Square Error
(MSE) REG, NN, EN 2.2% 75% of the studies had MSE below 0.07 and the remaining 25%

had MSE below 0.82

R Squared (R2) NN, EN, REG 1.3% R2 values in the study where above 75% and the remaining were
10.64% and 14.9% respectively

Receiver Operating
Characteristic Curve

(ROC)
SV, NN, EN 1% The study had 78%, 80% and 89% ROC values

Mean Absolute
Percent-

age Error (MAPE)
NN, REG 0.6% The study had MAPE values of 0.1048 and 3.2027

Other EN, NN 5.4% N/A

F. RQ 6—What are the critical limitations reported in studies related to tropical diseases?

In this section, we discuss the limitations of the studied articles, such as data, model,
and performance limitations.
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1. Stated Limitations: Among all 268 papers, only 56 stated their work limitations. The
following are the three main categories discussed throughout the papers:

• Data Limitation, which includes lack of resources due to resource-poor countries as
well as small samples of data and image resolution for image-based models. According
to Table 4, which shows the data size range used in the study, 14% of the articles used
data sizes less than 101.

As stated by [96], an ideal sample size is an imperative constituent of any research
work and a study can fail to discover the existing treatment effects due to inadequate
sample size. Consequently, an appropriate data size is necessary for a good result, and an
unfitting data size can lead to an insignificant result. Furthermore, 33% of the study did
not specify the data size used in their study, implying that almost 50% of the study used
an inadequate data size and did not specify the data size used in the study. Concerning
the type of dataset utilized in the study, 41% of the datasets were public, 52% did not use
the public dataset, and 7% did not specify whether the dataset used was from a public or
private repository. In addition, 86.5% of the study used non-patient records, 4.5% used
patient records, 5.2% did not specify the type of record used, and 3.8% used weather records
in their study.

• Model Limitation which includes model parameter assumption, applying a single
model on the dataset, is not generalizable, and focuses on the part of data features due
to the model’s nature. Among 270 papers, 13% of the articles focused on some data
features, and 29% used a single model for training. Given these limitations, we may
conclude that the prediction results could be more generalizable if the papers used
more data features. Additionally, as many articles suggested, considering different
models, and predicting the results through different models can lead us to a better
result. Therefore, considering more techniques can be suggested for improving model
performance.

• Performance Limitation, which includes inconsistent model replication and case-
dependent results. According to the performance metrics in Figure 13, 7% of the
articles were categorized as “Not Specified” because those articles did not quantify
the performance metric used. 5% of the articles were categorized as “Other” because
some of the studies used custom metrics and other metrics that were used did not fall
under the categories of ML performance metrics listed in the study.

5. Conclusions

Infectious diseases severely affect tropical regions of the world. These diseases share
several overlapping symptoms, thus making the diagnosis process difficult. Frontline
healthcare workers working in these areas of the world can benefit from decision-support
systems that can help them with disease diagnosis. Such DSSs can be developed using
ML techniques. This study reviews the existing literature that uses ML techniques for
diagnosing tropical diseases to highlight the efforts taken and the current research gaps.

Our study shows the increasing interest in the use of ML techniques for diagnosing
tropical diseases. Dengue fever, malaria, and tuberculosis are the three diseases that are
most studied in the literature. While many kinds of literature have focused on some NTDs,
such as dengue fever, researchers also missed some other NTDs, such as lymphatic filariasis,
schistosomiasis, trachoma, onchocerciasis, dracunculiasis, Buruli ulcer, etc. Future research
studies can focus on NTDs, as well as disease outbreaks in recent years (Table 6).

ML techniques are data-driven techniques, and their performance is dependent on the
availability of a good training dataset. Researchers working in this area should consider
using appropriate dataset sizes to allow the model to identify and learn the patterns in the
dataset since this study showcases that some of the existing literature have applied ML
techniques on small datasets. To verify the effectiveness of these techniques, researchers
who have access to larger datasets can apply and evaluate them in a larger setting.
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