
Applying DevOps Practices to Course Material 
Recommendations from Software Development to Develop and Manage Courses 

Joel Coffman∗ 
United States Air Force Academy 

Department of Computer and Cyber Sciences 
United States of America 

joel.coffman@afacademy.af.edu 

ABSTRACT 
DevOps, a portmanteau of development and operations, is a proven 
way to develop and manage IT systems. Key benefits compared to 
traditional software processes include faster time to market, which 
enables businesses to adapt to changing market conditions more 
rapidly than their peers, while providing world-class dependability 
and security. Many DevOps principles and practices also apply 
to academia even though curricula may not evolve as quickly as 
modern IT services. This paper encourages the adoption of specific 
capabilities that drive these performance improvements, including 
nascent examples of their use to manage course material, to improve 
the efficiency and effectiveness of faculty members’ daily work. 

CCS CONCEPTS 
• Social and professional topics → Computing education; Project 
management techniques; • Software and its engineering → Soft-
ware development methods. 

KEYWORDS 
DevOps, course material, course development 
ACM Reference Format: 
Joel Coffman. 2025. Applying DevOps Practices to Course Material: Recom-
mendations from Software Development to Develop and Manage Courses. 
In The 27th Western Canadian Conference on Computing Education (WCCCE 
’25), April 28–29, 2025, Calgary, AB, Canada. 7 pages. https:// 
doi.org/10.60770/027f-f062 

1 INTRODUCTION 
Faculty members increasingly confront the expectation to do more 
with less. From shrinking budgets to ballooning enrollments, faculty 
find themselves saddled by additional responsibilities that stretch 
their ability to satisfy the expectations of the traditional academic 
pillars of teaching, research, and service: “it is no longer a (thinly 
veiled) secret that in contemporary universities many scholars, 
both junior and senior, are struggling – struggling to manage their 
workloads; struggling to keep up with insistent institutional de-
mands to produce more, better and faster; struggling to reconcile 
∗ Also with Johns Hopkins University, Engineering for Professionals. 

This work is completed in its entirety by the author. All rights reserved. You may share 
digital or hard copies of this work for non-commercial purposes, provided that the work is 
not altered in any way, and that each copy includes proper attribution, the full citation, and 
this license notice. For all other uses, contact the author. 
WCCCE 2025, April 28–29, 2025, Calgary, Alberta, Canada 
© 2025 Copyright held by the author. 
https://doi.org/10.60770/027f-f062 

professional demands with family responsibilities and personal in-
terests; and struggling to maintain their physical and psychological 
health and emotional wellbeing” [45]. The experiences reported 
by many faculty [24] parallel those encountered in IT organiza-
tions where firefighting and heroic efforts are too often the norm. 
More generally, friction not only bedevils developers [18] but also 
faculty [40] and imposes significant costs, not only to an organiza-
tion as a whole (e.g., opportunity cost) but also to individuals (e.g., 
burnout [38]). DevOps, a set of cultural norms and technical prac-
tices, offers a better way of working, improving a host of outcomes 
including software delivery performance and job satisfaction [16]. 
These concepts also apply to academia and promise similar benefits. 

Despite its adoption by industry, DevOps lacks substantial trac-
tion in academia, including computing pedagogy. Lack of experi-
ence and perceived overhead deter the adoption of DevOps practices 
in academia [44] despite their dramatic and well-established ben-
efits: top performers in industry are not only ahead of [3, 15, 17] 
but also pulling away from their peers [16]. The need to treat 
course material similar to other software projects—i.e., applying 
software development practices to the design, implementation, 
and maintenance of course material—has previously been recog-
nized [27, 32, 33, 36]. As faculty wrestle with increased demands 
on their time, DevOps replaces the need for Herculean efforts with 
a proven path to improve outcomes. 

DevOps complements evidence-based approaches to course de-
sign (e.g., backward design [14, 59]) and offers specific technical 
practices that improve the efficiency of developing and managing 
courses. Though the artifacts differ from those produced by IT orga-
nizations, there are parallels: courses evolve (e.g., [21, 33]) as faculty 
adjust policies, update topics, and revise assignments to improve 
students’ mastery of the material. Moreover, faculty increasingly 
collaborate on everything from individual assignments to entire 
courses. The major contributions of this work are as follows: 

• It introduces DevOps, a set of cultural norms and technical 
practices that may not be familiar to faculty, particularly 
those without recent experience in the software industry. 

• It recommends the adoption of specific capabilities that drive 
performance improvements in IT organizations along with 
examples of their existing—albeit often limited—use to de-
velop and to manage course material. 

• It discusses the benefits and challenges of DevOps in an 
educational setting. 

The goal is to encourage computing faculty to embrace an estab-
lished industry trend, which offers a number of benefits for faculty 
members’ day-to-day work and is particularly, though not exclu-
sively, suited to managing courses at scale. 

1 

https://orcid.org/0000-0002-5500-4450
https://doi.org/10.60770/027f-f062
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.60770/027f-f062
mailto:joel.coffman@afacademy.af.edu


WCCCE 2025, April 28–29, 2025, Calgary, Alberta, Canada Joel Coffman 

The remainder of this paper is organized as follows. Section 2 
summarizes related work and describes DevOps. Section 3 pro-
vides recommendations for adopting DevOps capabilities to man-
age course material. Section 4 reflects on benefits and challenges. 
Finally, Section 5 concludes. 

2 BACKGROUND 
This section highlights related work and provides an overview of 
DevOps. This material addresses the need “to improve DevOps 
recognition in academia” [44], specifically among teaching faculty. 

2.1 Related Work 
“Time is an issue for all faculty” [35]. Exhaustion, stress, overload, 
and anxiety have become commonplace [22], which contributes to 
rising levels of burnout [20, 51]. DevOps can reduce and even to pre-
vent burnout [16], and this work is the first to specifically propose 
the adoption of DevOps by faculty in the context of teaching. 

Throughout the past decade, there have been repeated calls to 
manage course material similarly to software projects, yet adoption 
has been limited largely to the use of version control systems or plat-
forms. Mandala and Gary [36] state, “we have to start thinking of 
courseware development as an engineering process, much like soft-
ware development.” Similarly, Kloos et al. [32] call for “courseware 
engineering” that emphasizes the effectiveness, maintainability, 
and reusability of educational material. Haaranen et al. [27] chide 
themselves and other computing educators, “Even though we know 
about best practices in software development, they seem to be often 
forgotten when it comes to our own course development.” They 
suggest that limited time, an emphasis on developing new mate-
rial quickly, and changing course staff (including faculty and TAs) 
contribute to the failure to follow established software develop-
ment practices. DevOps directly improves the first two issues and 
indirectly addresses turnover by creating a safe system of work to 
recognize and resolve mistakes expediently. 

“Courseware as Code” [49] builds on the foundation of DevOps 
for course management and improvement, including distributed 
version control (e.g., Git) and automated workflows to increase 
transparency and consistency of contributions. Edmison et al. [12] 
propose a workflow for assignment management that leverages ver-
sion control and automation. Aquinas [46] applies the “everything-
as-code” approach to the development and delivery of hands-on 
exercises. ClassOps [39] aims to streamline course delivery. Desh-
pande et al. [11] use DevOps practices for assignment validation 
and delivery. In comparison, this paper provides a systematic frame-
work for the adoption of DevOps for course material. 

2.2 DevOps 
DevOps comprises cultural norms and technology practices that 
enable the fast flow of work from development into operation while 
providing world class reliability and security [25]. Technologies 
and tools vary across organizations and even across teams within 
an organization; DevOps focuses on key outcomes and specific 
capabilities to improve those outcomes, building on preexisting 
philosophies such as agile software development and lean. 

Figure 1 illustrates the DevOps process. The left side is similar 
to agile frameworks with an emphasis on incremental and iterative 

PlanDes
ign 

D
evelop 

Test 
Pa

ck
ag

e 

Rele
ase 

Deploy 

Monitor 

Figure 1: The DevOps process 

planning. Although design, development, and testing are depicted 
sequentially, they may be interleaved. The right side focuses on 
operational aspects. Explicit packaging and release processes ensure 
that software runs correctly when deployed to production, and 
monitoring detects issues proactively rather than reactively. 

High-performing organizations that embrace DevOps signifi-
cantly outperform their peers across a variety of metrics [16]: 

• Their lead time, the time spent between requesting work to 
completing it, is hundreds of times faster. 

• Their deployment frequency is more than forty times faster. 
• Their change failure rate, the percentage of changes that 
cause service failures or require rework, is 80% lower. 

• Their mean time to recovery (MTTR) is more than one hun-
dred times lower. 

Although these metrics are critical to IT systems, the ideas also 
apply in academic settings. For example, what faculty member does 
not want to create new course material quickly while ensuring that 
the material integrates correctly with the rest of the course? How 
many faculty have released an assignment only to have a student 
find a mistake that requires immediate resolution? 

The Three Ways. The outcomes that define DevOps stem from 
three core principles (see Figure 2). A critical concept is the value 
stream, “the sequence of activities an organization undertakes to 
deliver upon a customer request” [37] or whatever process delivers 
value [31]. Pragmatically, faculty should strive to create and to 
deliver learning activities as efficiently as possible.1 

Flow. These principles focus on the fast flow of work from de-
velopment to operations. The goal is to decrease lead time while 
simultaneously increasing dependability. Knowledge work (e.g., a 
faculty member’s responsibilities) lack a physical representation; 
consequently, work should be visualized using a technique like kan-
ban to see where work is flowing well and where it is stalled [10]. 
Strictly controlling the amount of work in progress is essential, for 
tasks that remain “in progress” not only have yet to deliver value 
but also introduce overhead due to context switching. Automation 
is a particularly powerful tool (consider, for example, automated as-
sessment in computing education [43] and, more generally, faculty 
members’ desire to reduce the time spent on repetitive tasks [40]). 
1Instruction-centered practices, such as lecturing, disseminate information effi-
ciently [23] but are relatively ineffective teaching methods [19]. More effective strate-
gies, such as project-based learning [1], often require greater time commitment (i.e., 
investment by both faculty and students). Believing that instruction is either efficient 
or effective is a false dilemma; faculty strive to (and can) improve both. 

2 



Applying DevOps Practices to Course Material WCCCE 2025, April 28–29, 2025, Calgary, Alberta, Canada 

Flow The fast flow of work from development to production 
• Make work visible 
• Limit work in progress 
• Reduce batch sizes 
• Reduce the number of hand-offs 
• Identify and elevate constraints 
• Eliminate hardships in daily work 

Feedback Rapid feedback at every stage of the process 
• See problems as they occur 
• Swarm and solve problems to build new knowledge 
• Push quality closer to the source 
• Optimize for downstream work 

Learning Continual learning through experimentation to improve 
flow and to provide feedback more quickly 
• Institutionalize the improvement of daily work 
• Transform local discoveries into global improvements 
• Inject resiliency into daily work 

Figure 2: DevOps principles [31] 

In course design, flow is realized by the rapid delivery (i.e., de-
ployment) of high quality course material. For example, a new 
assignment should integrate seamlessly into an existing course 
while increasing students’ mastery of concepts compared to prior 
learning activities. Major impediments to flow include multitask-
ing; unnecessary hand-offs, such as multiple rounds of reviews 
by TAs [11]; and the need for heroics to achieve goals because 
individuals cannot sustain such efforts indefinitely. 

Feedback. These principles emphasize the dependability of not 
only software but also the processes that manage development 
and operations. Feedback revolves around safe systems of work: 
individuals and teams need processes in place to detect and to 
recover from mistakes. Not surprisingly, timely feedback increases 
the likelihood of catching mistakes [6]. A simple example of such 
a mistake in an academic context is distributing a programming 
assignment with automated tests that do not work correctly [11]. 
An effective feedback loop requires identifying problems, solving 
them, and creating automated processes to prevent those problems. 

In an academic setting, departments should have a curricular re-
view mechanism to identify changes to course outcomes that would 
adversely affect students’ preparation for subsequent courses. This 
review might initially be a manual process, but ideally would be 
automated [33] so that dependencies between courses (e.g., recom-
mending an algorithm on the basis of its big 𝑂 analysis) are flagged 
when changes are proposed. Automating the dependency analy-
sis saves valuable time compared to a generic review, reduces the 
likelihood of overlooking a dependency, and enables the affected 
faculty to collaborate on the solution to conflicts. 

Learning. The principles of continual learning and experimenta-
tion shorten the virtuous cycle created by the principles of flow and 
feedback. Innovation requires a disciplined and scientific approach 
to taking risks. Not every change will work as expected in practice, 
which represents new knowledge to be shared with others. 

Faculty implicitly embrace this principle in two forms. One is 
improving the efficiency of instruction. For example, a faculty mem-
ber may record a demonstration of using a particular tool; the 

Continuous delivery (CD) 
• Use version control for all artifacts 
• Automate the deployment process 
• Implement continuous integration (CI) 
• Use trunk-based development methods 
• Implement test automation 
• Support test data management 
• Shift left on security 
• Implement continuous delivery (CD) 

Architecture 
• Use a loosely coupled architecture 
• Architect for empowered teams 

Product and Process 
• Gather and implement feedback 
• Make the flow of work visible throughout the value stream 
• Work in small batches 
• Foster and enable experimentation 

Lean Management and Monitoring 
• Have lightweight change approval processes 
• Monitor to inform decisions 
• Check system health proactively 
• Improve processes and limit work-in-progress 
• Visualize work to monitor quality 

Cultural 
• Support a generative culture 
• Encourage and support learning 
• Support and facilitate collaboration among teams 
• Provide resources and tools that make work meaningful 
• Support or embody transformational leadership 

Figure 3: Capabilities that drive improvement [16] 

initial time investment is recouped as students ask fewer questions 
in office hours about how to use the tool. Another is improving 
the effectiveness of instruction. For example, a faculty member 
may replace existing course materials (e.g., lectures) with evidence-
based teaching strategies (e.g., active learning). Such changes, and 
the assessment of them, form the basis of experience reports and 
computing education research. 

3 RECOMMENDATIONS 
Forsgren et al. [16] enumerate 24 capabilities that drive improve-
ment in software delivery performance (see Figure 3). This section 
describes the capabilities that are most applicable in academia2 in 
the form of specific recommendations and examples that faculty 
can adopt, incrementally if desired, in the courses that they teach. 
References to prior work illustrate nascent uses or existing use 
cases, and examples propose additional ways to embrace these con-
cepts. The recommendations themselves are intentionally general 
because faculty should have flexibility, not dictates regarding the 
use of specific technologies, to manage their courses [33]. 

3.1 Continuous delivery (CD) 
Continuous delivery (CD) is a software development practice in 
which software can be deployed at any time. CD reduces lead time 
while improving quality [29]. 
2Architectural and cultural capabilities, such as the need to support or embody trans-
formational leadership, are often outside the control of individual faculty members. 

3 



WCCCE 2025, April 28–29, 2025, Calgary, Alberta, Canada Joel Coffman 

3.1.1 Use version control for all artifacts. Comprehensive version 
control is essential, obviously for software but more broadly for any 
project that involves collaboration and recovering from mistakes, 
including the development and management of course material. 
Used correctly, version control provides a detailed history of who 
made a change, what changed, when it changed, and why it changed. 

In comparison to an archive of course material, a version control 
system captures metadata about changes and simplifies compar-
isons (e.g., which learning objectives were modified). Cloud-based 
office productivity suites (e.g., Google Docs Editors and Microsoft 
365) automatically version files and offer mechanisms for “suggest-
ing” changes, but these tools do not offer the same support for merg-
ing changes when documents evolve independently and recording 
metadata, particularly the rationale, for changes. Similarly, learning 
management systems (LMSs) facilitate copying course content, but 
not a way to visualize and share specific changes as courses evolve. 

Seminal work [7] describes the benefits of using version con-
trol “to reduce administrative demands and to support creative 
collaboration” among faculty; these benefits are echoed by faculty 
elsewhere [12, 26, 28, 34, 49]. Zagalsky et al. [61] summarize the 
motivations and benefits of using GitHub as a collaborative educa-
tional platform, including the visualization of changes as content 
is updated. Hosting course material, including lecture slides, code 
samples, and assignments, in GitHub or GitLab is one way to make 
it available to students [8, 26, 28, 30, 49, 50, 54, 61]. 

3.1.2 Automate the deployment process. Automating deployment 
ensures that updates to course materials are published as quickly 
as possible without requiring any steps to be performed manually. 

The need to automate repetitive and tedious tasks, such as pub-
lishing assignments to an LMS and provisioning autograders [12], 
supporting large class sizes [33, 40], and preparing accreditation 
reports [13], has previously been recognized. A major benefit of 
deployment automation is that students always have the latest ver-
sion of course material [8, 26] and dependencies (e.g., source code 
snippets embedded in a lecture) are up-to-date [33]. 

3.1.3 Implement continuous integration (CI). Continuous integra-
tion (CI) ensures that each change is tested—and any issues fixed— 
immediately, which epitomizes the DevOps principle of feedback. 
Practically speaking, CI gains prominence when multiple faculty 
members collaborate on course material [7, 26]. 

Lau et al. [33] provide a case study of the difficulty of supporting 
multiple versions of Python. CI shines in this context. As an exam-
ple, starter code for a programming assignment and the solution 
may be tested against currently supported releases (see Figure 4). 
If, for example, the latest release reports new warnings or errors, 
those issues will be flagged automatically when the workflow runs, 
drawing attention to problems while saving valuable faculty time 
compared to manual testing against even one version of Python. 

3.1.4 Use trunk-based development. Changes should be developed 
from the mainline and quickly merged back into the mainline. Short-
lived branches that persist for less than a day are commonly used 
to implement this practice [16]. 

In an academic context, the antithesis of trunk-based develop-
ment is copying content from an existing course, making substan-
tial changes, and subsequently trying to incorporate updates from 

jobs: 
test: 

runs-on: ubuntu-latest 
strategy: 

matrix: 
python-version: ['3.11', '3.12', '3.13'] 

steps: 
- uses: actions/checkout@v4 
- uses: actions/setup-python@v4 

with: 
python-version: ${{ matrix.python-version }} 

- name: Install dependencies 
run: pip install -r dependencies.txt 

- name: pytest 
run: py.test tests/ 

Figure 4: Excerpt of a GitHub Actions workflow. The test 
job executes the three Python versions independently. 

or sharing changes with the original course. In general, a branch 
become more difficult to merge over time as both the trunk and 
branch evolve; this effort ultimately represents waste, either due 
to the difficulty of integrating changes or due to the absence of 
improvements (e.g., clarifications to an assignment’s instructions). 

3.1.5 Implement test automation. Test automation alleviates the 
burden of manual testing and increases confidence that changes 
do not introduce problems. Tests must be reliable, meaning that a 
failure indicates a real issue and passing indicates that the change 
is safe to release, and should be run on every proposed change. 

There are many examples of how to leverage test automation. 
Spell checking can be performed automatically by a pre-commit 
hook. A course website can be checked for accessibility features and 
broken links [8]. Code included in lectures can be compiled using 
a build tool (e.g., make) to avoid the embarrassment of omitting a 
semicolon [26]. Code blocks in tutorials can be tested to ensure they 
are not missing instructions [41]. Although each of the aforemen-
tioned tasks can be performed manually, doing so is error-prone, 
as it is easy to overlook something. Extending this idea, automated 
grading provides “significant savings of scarce teaching resources” 
while also improving student performance [60]. 

3.2 Product and Process 
While agile is widely recognized, its principles are often ignored [2]. 

3.2.1 Gather and implement feedback. Feedback to faculty mem-
bers may come in many forms: implicitly through students’ per-
formance on assessments and explicitly in the form of course eval-
uations, classroom observations [42], and pilot offerings of new 
courses with subsequent refinements [58]. Feedback, regardless 
of its source, ideally drives improvements to learning activities 
by identifying what is and is not working in a course. Changes in 
response to feedback should be annotated in the version control his-
tory, providing a detailed record of why the change was made. This 
same concept applies to computing education research, as faculty 
test and evaluate the effectiveness of various teaching techniques. 

4 



Applying DevOps Practices to Course Material WCCCE 2025, April 28–29, 2025, Calgary, Alberta, Canada 

Visibility into students’ struggles and problem-solving processes 
help faculty correct misconceptions and resolve sources of frustra-
tion [40]. Prior work [26, 28, 61] emphasizes student participation, 
either correcting mistakes or updating content. A decreasing num-
ber of issues when there are significant changes to course material 
indicates a reduced change failure rate. 

3.2.2 Make the flow of work visible throughout the value stream. 
Faculty often labor in relative obscurity with respect to teaching 
activities, emerging at the end with little visibility into how they ar-
rived at that point [40, 56], and it is likely that the effort invested by 
an individual faculty member is underestimated [53], which makes 
it difficult to recognize behind-the-scenes logistical work [33]. 

Techniques like kanban should be used to track all aspects of 
course design, from the adoption of a single “nifty assignment” to 
the development of an entire course. A visual workflow clearly 
identifies obstacles (e.g., administrative delays in approving curric-
ular changes) and allows faculty to make informed decisions based 
on what is feasible for them to accomplish in the available time. 

3.2.3 Work in small batches. A small batch size reduces work in 
progress, which predicts lead time, and lead time is correlated with 
quality, customer satisfaction, and employee happiness [31]. 

One application of this concept is making small incremental 
changes to a course [21] rather than combining those changes: 
larger changes delay the detection of mistakes (e.g., discrepancies 
between stated learning objectives and questions in a test bank) 
and increases the amount of rework when mistakes are found. Of 
course, every course eventually requires a major redesign, but even 
in this instance, the concept of the minimum viable product [48] 
is valuable, as it facilitates early feedback (e.g., from other faculty 
members) on the initial concept rather than deferring it. 

3.2.4 Foster and enable experimentation. When a particular teach-
ing strategy isn’t working for a group of students, faculty should 
be free to try out new ideas based on established pedagogical prin-
ciples to improve students’ learning experience. In practice, this 
idea dictates flexibility to design and adapt courses while holding 
faculty responsible for the course’s established learning outcomes. 

3.3 Lean Management and Monitoring 
Lean creates value by improving efficiency and reducing waste. 

3.3.1 Have lightweight change approval processes. Peer review cou-
pled with CD (§3.1) improves software delivery performance. In 
teaching, faculty—particularly new instructors—may solicit feed-
back on changes from other faculty members. In comparison, re-
quiring explicit approval from an external body (similar to a change 
advisory board in IT) may impose delay without improving quality. 

Pull (or merge) requests are excellent way to provide lightweight 
peer reviews. They offer an asynchronous review mechanism for 
faculty to weigh in on curricular issues where consensus is required, 
such as a proposed change to a course description. Such review 
does not detract from faculty’s academic freedom: public discourse 
increases transparency and provides a record of discussion and 
decisions that are likely to be forgotten as years pass. Fast feedback 
allows faculty to identify and to correct issues immediately rather 
than waiting until they become more difficult to address. 

3.3.2 Monitor to inform decisions. Rather straightforward, take 
action when something is not working as expected. For example, 
frequent low-stakes assessments enable faculty to review what 
students are and are not learning to ensure competence with foun-
dational skills prior to moving on to more advanced concepts. 

Monitoring should be proactive, designed to identify issues be-
fore they become significant problems. For example, potential copy-
right violations for third-party images from Wikimedia Commons 
can be flagged when the image is removed from the media repos-
itory. Documentation rot and inaccessible resources, which con-
tribute to non-executable tutorials [41], should be identified and 
corrected before students encounter them. Repository badges (e.g., 
dependencies out of date ) [57] provide an unobtrusive way to alert faculty to 
software dependency problems prior to the start of a semester. 

3.3.3 Improve processes and limit work-in-progress. Limiting work-
in-progress keeps individuals and teams from becoming overbur-
dened, which increases lead time, and exposes obstacles to the fast 
flow of work. Controlling work in progress ultimately improves 
quality, student satisfaction, and faculty members’ well-being. 

Griffith and Altinay [24] describe a framework to evaluate faculty 
workloads, particularly teaching, because “many faculty members 
find themselves carrying higher workloads than their peers, feeling 
overburdened by increasing or changing institutional expectations, 
and failing to reach career goals.” Limiting work-in-progress by 
itself is insufficient: visualizing work and an effective feedback loop 
are critical to identify and eliminate obstacles [16]. 

4 DISCUSSION 
DevOps is especially suited for large courses with hundreds of 
students and multiple faculty members (or TAs). Nevertheless, it 
should not be ignored by individual faculty members, including 
those without TA support. The DevOps principles related to flow 
have been shown to improve productivity and reduce burnout in IT 
organizations [16]; achieving a “flow state” and reducing cognitive 
load have also been shown to improve developer, team, and orga-
nizational outcomes [18]. Academia is no exception to the need to 
manage work effectively. Furthermore, institutional efforts, such as 
disability services and accreditation, implicitly involve all faculty 
members, even adjuncts teaching a single course. Technical prac-
tices like CD decrease the amount of unplanned work and rework, 
which leads to a nearly 30% increase in time for new work [16]. 

Ease of use and perceived usefulness, which is strongly corre-
lated with estimated time saving [52], are key to adopting new 
technologies [5, 9]; barriers include lack of reliability [5]; structural 
constraints, such as lack of adequate support [4]; and, especially 
for faculty, time [44, 47, 55]. Industry-standard tools (e.g., Git) and 
platforms are widely used and reliable, and some platforms offer 
special support for academic faculty. With respect to time, adopt-
ing DevOps practices is not considerably different than adopting 
learner-centered design: both require up-front investment, and both 
have demonstrated benefits in the long run. Although the specter of 
a steep learning curve is daunting, incrementally adopting DevOps 
capabilities is a viable and worthwhile path forward. 

Interviews with faculty indicate specific barriers to the use of 
third-party services, such as GitHub, including institutional poli-
cies and legal restrictions [61]. These issues are more critical in the 

5 



WCCCE 2025, April 28–29, 2025, Calgary, Alberta, Canada Joel Coffman 

context of student work and “fair use” of copyrighted material in a 
classroom setting. Students’ contributions to course material are 
generally limited, such as correcting mistakes [26, 28]; even if public, 
statutes like the Family Educational Rights and Privacy Act (FERPA) 
in the United States restrict the release of “education records” by 
an institution, which does not apply to voluntary contributions 
by students [62]. Publishing copyrighted material can be avoided 
by making a repository private or linking to material hosted by 
an institutionally-supported platform (e.g., Dropbox, Google Drive, 
or Microsoft OneDrive) with appropriate authentication. These 
concerns can also be mitigated by using platforms managed in-
stitutionally with single sign-on (SSO) albeit with an increased 
administrative overhead compared to cloud-based services [34]. 

Faculty and non-academic staff, such as instructional designers, 
may be using DevOps practices without publishing about their 
experiences or using different terminology. Some of DevOps’s es-
sential capabilities are being adopted piecemeal, such as the use of 
version control, as described previously. In contrast, Pang et al. [44] 
emphasize that faculty are “not motivated to learn or adopt DevOps” 
due to its perceived cost. While pressure—particularly demands on 
faculty time—may eventually force the adoption of new ways of 
working, the status quo may be “good enough” for years to come. 

Finally, will DevOps, which has proven invaluable in the IT 
industry, realize similar benefits in academia? Anecdotal evidence, 
most frequently in the form of “experience reports” that address the 
aforementioned capabilities, indicates an affirmative response to 
this question (e.g., [11, 26, 28, 49]). For example, Hofstätter et al. [28] 
describe their experience as “truly time-saving and sustainable 
throughout a busy semester” with overwhelming positive feedback 
from students. This paper provides a systematic framework to place 
these ideas in context and argue for their adoption more widely. 

5 CONCLUSION 
Paraphrasing Heraclitus, “Change is the only constant.” Faculty in 
computing—more so than most disciplines—must adapt to the rapid 
obsolescence of technologies and evolution of course content [55]. 
DevOps has proved to be an effective approach to develop and 
manage IT systems; many of these capabilities also apply to the 
development and management of course material. 

Two avenues for future work bear particular mention. First, wide-
spread adoption of DevOps practices in the context of managing 
course material is likely predicated on the creation and sharing 
of effective DevOps workflows. Improving flow can be as simple 
as automating processes; existing CI services offer a way to share 
these reusable workflows, lessening their learning curve for faculty. 
Second, prior work in the IT industry (e.g., the “State of DevOps” 
reports3) provides a guide for rigorously measuring the benefits of 
DevOps in an academic setting, both for managing courses with a 
significant staff and courses taught by an individual faculty member. 

ACKNOWLEDGMENTS 
The views expressed herein are those of the author and do not 
necessarily reflect the official policy or position of Johns Hopkins 
University or the United States Air Force Academy, the Air Force, 
the Department of Defense, or the U.S. Government. 
3DORA publications: https://dora.dev/publications/ 

REFERENCES 
[1] Phyllis C. Blumenfeld, Elliot Soloway, Ronald W. Marx, Joseph S. Krajcik, Mark 

Guzdial, and Annemarie Palincsar. 1991. Motivating Project-Based Learning: 
Sustaining the Doing, Supporting the Learning. Educational Psychologist 26, 3-4 
(1991), 369–398. https://doi.org/10.1080/00461520.1991.9653139 

[2] Defense Innovation Board. 2018. Detecting Agile BS. Technical Report. Depart-
ment of Defense. 

[3] Alanna Brown, Nicole Forsgren, Jez Humble, Nigel Kersten, and Gene Kim. 2016. 
2016 State of DevOps Report. https://dora.dev/research/2016/2016-state-of-
devops-report.pdf 

[4] Tom Buchanan, Phillip Sainter, and Gunter Saunders. 2013. Factors affecting 
faculty use of learning technologies: implications for models of technology 
adoption. Journal of Computing in Higher Education 25, 1 (April 2013), 1–11. 
https://doi.org/10.1007/s12528-013-9066-6 

[5] Darrell L. Butler and Martin Sellbom. 2002. Barriers to Adopting Technology for 
Teaching and Learning. Educause Quarterly 25, 2 (2002), 22–28. 

[6] Michael A. Campion and Carol L. McClelland. 1991. Interdisciplinary examination 
of the costs and benefits of enlarged jobs: A job design quasi-experiment. Journal 
of Applied Psychology 76, 2 (1991), 186–198. 

[7] Curtis Clifton, Lisa C. Kaczmarczyk, and Michael Mrozek. 2007. Subverting the 
Fundamentals Sequence: Using Version Control to Enhance Course Management. 
In Proceedings of the 38th SIGCSE Technical Symposium on Computer Science 
Education (SIGCSE ’07). Association for Computing Machinery, New York, NY, 
86–90. https://doi.org/10.1145/1227310.1227344 

[8] Joel Coffman. 2024. GitHub Pages as an LMS Alternative. In Proceedings of 
the 26th Western Canadian Conference on Computing Education (WCCCE ’24). 
Association for Computing Machinery, New York, NY, Article 18, 2 pages. https: 
//doi.org/10.1145/3660650.3660667 

[9] Fred D. Davis. 1989. Perceived Usefulness, Perceived Ease of Use, and User 
Acceptance of Information Technology. MIS Quarterly 13, 3 (Sept. 1989), 319–340. 
https://doi.org/10.2307/249008 

[10] Dominica DeGrandis. 2017. Making Work Visible: Exposing Time Theft to Optimize 
Work & Flow (first ed.). IT Revolution Press, LLC, Portland, OR. 

[11] Gururaj Deshpande, Shravan Cheekati, Shail Patel, Pranav Raj, Madhuri Singh, 
Mark Pindur, Nouf Al Soghyar, Bryan Zhao, Parisa Babolhavaeji, Mohammad 
Taher, Krish Nathan, Will Spaeth, and Max Mahdi Roozbahani. 2024. Trans-
forming CS Education with DevOps: Streamlined Assignment Validation and 
Delivery @ Scale. In Proceedings of the Eleventh ACM Conference on Learning @ 
Scale (Atlanta, GA, USA) (L@S ’24). Association for Computing Machinery, New 
York, NY, USA, 259–264. https://doi.org/10.1145/3657604.3664676 

[12] Bob Edmison, Austin Cory Bart, and Stephen H. Edwards. 2021. A Proposed 
Workflow For Version-Controlled Assignment Management. In Proceedings of 
SPLICE 2021 workshop CS Education Infrastructure for All III: From Ideas to Practice 
(Virtual Event) (SPLICE ’21). 3 pages. 

[13] Eugene Essa, Andrew Dittrich, and Sergiu Dascalu. 2010. ACAT: A Web-Based 
Software Tool to Facilitate Course Assessment for ABET Accreditation. In 2010 
Seventh International Conference on Information Technology: New Generations. 
IEEE, 88–93. https://doi.org/10.1109/ITNG.2010.224 

[14] L. Dee Fink. 2003. Creating Significant Learning Experiences: An Integrated Ap-
proach to Designing College Courses. Jossey-Bass, San Francisco, CA. 

[15] Nicole Forsgren, Jez Humble, and Gene Kim. 2018. 2018 State of DevOps Re-
port. https://dora.dev/research/2018/dora-report/2018-dora-accelerate-state-of-
devops-report.pdf 

[16] Nichole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The Science 
Behind DevOps: Building and Scaling High Performing Technology Organizations. 
IT Revolution Press, LLC, Portland, OR. 

[17] Nicole Forsgren, Jez Humble, Gene Kim, Alanna Brown, and Nigel Kersten. 2017. 
2017 State of DevOps Report. https://dora.dev/research/2017/2017-state-of-
devops-report.pdf 

[18] Nicole Forsgren, Eirini Kalliamvakou, Abi Noda, Michaela Greiler, Brian Houck, 
and Margaret-Anne Storey. 2024. DevEx in Action. Commun. ACM 67, 6 (May 
2024), 42–51. https://doi.org/10.1145/3643140 

[19] Scott Freeman, Sarah L. Eddy, Miles McDonough, Michelle K. Smith, Nnadozie 
Okoroafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning in-
creases student performance in science, engineering, and mathematics. Pro-
ceedings of the National Academy of Sciences 111, 23 (2014), 8410–8415. https: 
//doi.org/10.1073/pnas.1319030111 

[20] Virginia Gewin. 2021. Pandemic burnout is rampant in academia. Nature 591, 
7850 (2021), 489–492. https://doi.org/10.1038/d41586-021-00663-2 

[21] Nasser Giacaman, Partha Roop, and Valerio Terragni. 2023. Evolving a Program-
ming CS2 Course: A Decade-Long Experience Report. In Proceedings of the 54th 
ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON, 
Canada) (SIGCSE 2023). Association for Computing Machinery, New York, NY, 
USA, 507–513. https://doi.org/10.1145/3545945.3569831 

[22] Rosalind Gill. 2009. Breaking the silence: The hidden injuries of neo-liberal 
academia. In Secrecy and Silence in the Research Process, Roisin Ryan-Flood and 
Rosalind Gill (Eds.). Routledge, London, UK, 228–244. 

6 

https://dora.dev/publications/
https://doi.org/10.1080/00461520.1991.9653139
https://dora.dev/research/2016/2016-state-of-devops-report.pdf
https://dora.dev/research/2016/2016-state-of-devops-report.pdf
https://doi.org/10.1007/s12528-013-9066-6
https://doi.org/10.1145/1227310.1227344
https://doi.org/10.1145/3660650.3660667
https://doi.org/10.1145/3660650.3660667
https://doi.org/10.2307/249008
https://doi.org/10.1145/3657604.3664676
https://doi.org/10.1109/ITNG.2010.224
https://dora.dev/research/2018/dora-report/2018-dora-accelerate-state-of-devops-report.pdf
https://dora.dev/research/2018/dora-report/2018-dora-accelerate-state-of-devops-report.pdf
https://dora.dev/research/2017/2017-state-of-devops-report.pdf
https://dora.dev/research/2017/2017-state-of-devops-report.pdf
https://doi.org/10.1145/3643140
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1038/d41586-021-00663-2
https://doi.org/10.1145/3545945.3569831


Applying DevOps Practices to Course Material WCCCE 2025, April 28–29, 2025, Calgary, Alberta, Canada 

[23] David Gooblar. 2019. The Missing Course: Everything They Never Taught You 
about College Teaching. Harvard University Press, Cambridge, MA. 

[24] Andrew S. Griffith and Zeynep Altinay. 2020. A framework to assess higher 
education faculty workload in U.S. universities. Innovations in Education and 
Teaching International 57, 6 (2020), 691–700. https://doi.org/10.1080/14703297. 
2020.1786432 

[25] Gary Gruver. 2016. Starting and Scaling DevOps in the Enterprise. BookBaby, 
Pennsauken, NJ. 

[26] Lassi Haaranen and Teemu Lehtinen. 2015. Teaching Git on the Side: Version 
Control System as a Course Platform. In Proceedings of the 2015 ACM Conference on 
Innovation and Technology in Computer Science Education (ITiCSE ’15). Association 
for Computing Machinery, New York, NY, 87–92. https://doi.org/10.1145/2729094. 
2742608 

[27] Lassi Haaranen, Giacomo Mariani, Peter Sormunen, and Teemu Lehtinen. 2020. 
Complex Online Material Development in CS Courses. In Proceedings of the 
20th Koli Calling International Conference on Computing Education Research (Koli 
Calling ’20). Association for Computing Machinery, New York, NY, Article 26, 
5 pages. https://doi.org/10.1145/3428029.3428053 

[28] Sebastian Hofstätter, Sophia Althammer, Mete Sertkan, and Allan Hanbury. 2022. 
A Time-Optimized Content Creation Workflow for Remote Teaching. In Pro-
ceedings of the 53rd ACM Technical Symposium on Computer Science Education -
Volume 1 (SIGCSE 2022). Association for Computing Machinery, New York, NY, 
731–737. https://doi.org/10.1145/3478431.3499421 

[29] Jez Humble. 2018. Continuous Delivery Sounds Great, but Will It Work Here? 
Commun. ACM 61, 4 (March 2018), 34–39. https://doi.org/10.1145/3173553 

[30] John Kelleher. 2014. Employing Git in the Classroom. In 2014 World Congress 
on Computer Applications and Information Systems (WCCAIS). IEEE, 1–4. https: 
//doi.org/10.1109/WCCAIS.2014.6916568 

[31] Gene Kim, Jez Humble, Patrick Debois, and John Willis. 2016. The DevOps 
Handbook: How to Create World-Class Agility, Reliability, & Security in Technology 
Organizations (first ed.). IT Revolution Press, LLC, Portland, OR. 

[32] Carlos Delgado Kloos, Ma Blanca Ibáñez, Carlos Alario-Hoyos, Pedro J. Muñoz-
Merino, Iria Estévez Ayres, Carmen Fernández Panadero, and Julio Villena. 2016. 
From Software Engineering to Courseware Engineering. In 2016 IEEE Global 
Engineering Education Conference (EDUCON). IEEE, 1122–1128. https://doi.org/ 
10.1109/EDUCON.2016.7474695 

[33] Sam Lau, Justin Eldridge, Shannon Ellis, Aaron Fraenkel, Marina Langlois, Suraj 
Rampure, Janine Tiefenbruck, and Philip J. Guo. 2022. The Challenges of Evolving 
Technical Courses at Scale: Four Case Studies of Updating Large Data Science 
Courses. In Proceedings of the Ninth ACM Conference on Learning @ Scale (L@S 
’22). Association for Computing Machinery, New York, NY, 201–211. https: 
//doi.org/10.1145/3491140.3528278 

[34] Joseph Lawrance, Seikyung Jung, and Charles Wiseman. 2013. Git on the Cloud in 
the Classroom. In Proceeding of the 44th ACM Technical Symposium on Computer 
Science Education (Denver, Colorado) (SIGCSE ’13). Association for Computing 
Machinery, New York, NY, 639–644. https://doi.org/10.1145/2445196.2445386 

[35] Stephanie Lunn, Maíra Marques Samary, Susanne Hambrusch, and Aman Yadav. 
2022. Forging a Path: Faculty Interviews on the Present and Future of Computer 
Science Education in the United States. ACM Transactions on Computing Education 
22, 4, Article 51 (Sept. 2022), 24 pages. https://doi.org/10.1145/3546581 

[36] Srikesh Mandala and Kevin A. Gary. 2013. Distributed Version Control for 
Curricular Content Management. In 2013 IEEE Frontiers in Education Conference 
(FIE). IEEE, 802–804. https://doi.org/10.1109/FIE.2013.6684936 

[37] Karen Martin and Mike Osterling. 2014. Value Stream Mapping: How to Visualize 
Work and Align Leadership for Organizational Transformation (1st ed.). McGraw-
Hill Education, New York, NY. 

[38] Christina Maslach, Wilmar B. Schaufeli, and Michael P. Leiter. 2001. Job Burnout. 
Annual Review of Psychology 52, 1 (2001), 397–422. https://doi.org/10.1146/ 
annurev.psych.52.1.397 

[39] Samim Mirhosseini. 2023. Addressing CS-Ed Course Material Preparation and 
Delivery Frictions Through ClassOps. Ph. D. Dissertation. North Carolina State 
University, Raleigh, North Carolina. 

[40] Samim Mirhosseini, Austin Z. Henley, and Chris Parnin. 2023. What Is Your 
Biggest Pain Point? An Investigation of CS Instructor Obstacles, Workarounds, 
and Desires. In Proceedings of the 54th ACM Technical Symposium on Computer 
Science Education V. 1 (SIGCSE 2023). Association for Computing Machinery, New 
York, NY, 291–297. https://doi.org/10.1145/3545945.3569816 

[41] Samim Mirhosseini and Chris Parnin. 2020. Docable: Evaluating the Executability 
of Software Tutorials. In Proceedings of the 28th ACM Joint Meeting on European 
Software Engineering Conference and Symposium on the Foundations of Software 
Engineering (Virtual Event) (ESEC/FSE 2020). Association for Computing Machin-
ery, New York, NY, 375–385. https://doi.org/10.1145/3368089.3409706 

[42] Matt O’Leary. 2020. Classroom Observation: A Guide to the Effective Observation 
of Teaching and Learning (2nd ed.). Routledge), London, UK. 

[43] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated As-
sessment in Computer Science Education: A State-of-the-Art Review. ACM 
Transactions on Computing Education 22, 3, Article 34 (June 2022), 40 pages. 

https://doi.org/10.1145/3513140 
[44] Candy Pang, Abram Hindle, and Denilson Barbosa. 2020. Understanding DevOps 

Education with Grounded Theory. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering: Software Engineering Education and 
Training (ICSE-SEET ’20). Association for Computing Machinery, New York, NY, 
107–118. https://doi.org/10.1145/3377814.3381711 

[45] Maria do Mar Pereira. 2016. Struggling within and beyond the Performative 
University: Articulating activism and work in an “academia without walls”. 
Women’s Studies International Forum 54 (2016), 100–110. https://doi.org/10.1016/ 
j.wsif.2015.06.008 

[46] W. Michael Petullo. 2022. Courses as Code: The Aquinas Learning System. In 
Proceedings of the 15th Workshop on Cyber Security Experimentation and Test 
(Virtual Event) (CSET ’22). Association for Computing Machinery, New York, NY, 
USA, 30–38. https://doi.org/10.1145/3546096.3546099 

[47] George M. Piskurich. 2006. Rapid Instructional Design: Learning ID Fast and Right 
(second ed.). Pfeiffer, San Francisco, CA. 

[48] Eric Ries. 2011. The Lean Startup: How Today’s Entrepreneurs Use Continuous 
Innovation to Create Radically Successful Businesses. Crown Publishing Group, 
New York, NY. 

[49] Julianna Rodriguez, Christopher Apsey, Sarah Rees, Todd Boudreau, and George 
Raileanu. 2018. Courseware as Code: Setting a new bar for transparency and 
collaboration. In 2018 IEEE Frontiers in Education Conference (FIE). IEEE, 4 pages. 
https://doi.org/10.1109/FIE.2018.8658928 

[50] Arnold Rosenbloom, Sadia Sharmin, and Andrew Wang. 2017. GIT: Pedagogy, 
Use and Administration in Undergraduate CS. In Proceedings of the 2017 ACM 
Conference on Innovation and Technology in Computer Science Education (ITiCSE 
’17). Association for Computing Machinery, New York, NY, 82–83. https://doi. 
org/10.1145/3059009.3072980 

[51] Zaynab Sabagh, Nathan C. Hall, and Alenoush Saroyan. 2018. Antecedents, 
correlates and consequences of faculty burnout. Educational Research 60, 2 (2018), 
131–156. https://doi.org/10.1080/00131881.2018.1461573 

[52] Laura Schauer, Robert Stewart, and Manuel Maarek. 2024. Integrating Canvas 
and GitLab to Enrich Learning Processes. In Proceedings of the 46th International 
Conference on Software Engineering: Software Engineering Education and Training 
(Lisbon, Portugal) (ICSE-SEET ’24). Association for Computing Machinery, New 
York, NY, USA, 180–190. https://doi.org/10.1145/3639474.3640056 

[53] Bruce Arne Sherwood and Jill H. Larkin. 1989. New Tools for Courseware 
Production. Journal of Computing in Higher Education 1, 1 (March 1989), 3–20. 
https://doi.org/10.1007/BF02942603 

[54] Aaron Daniel Snowberger and Choong Ho Lee. 2023. A Workflow for Practical 
Programming Class Management Using GitHub Pages and GitHub Classroom. 
Journal of Practical Engineering Education 15, 2 (Aug. 2023), 331–339. https: 
//doi.org/10.14702/JPEE.2023.331 

[55] Cynthia Taylor, Jaime Spacco, David P. Bunde, Zack Butler, Heather Bort, Christo-
pher Lynnly Hovey, Francesco Maiorana, and Thomas Zeume. 2018. Propagating 
the Adoption of CS Educational Innovations. In Proceedings Companion of the 23rd 
Annual ACM Conference on Innovation and Technology in Computer Science Educa-
tion (Larnaca, Cyprus) (ITiCSE 2018 Companion). Association for Computing Ma-
chinery, New York, NY, USA, 217–235. https://doi.org/10.1145/3293881.3295785 

[56] Josh Tenenberg and Sally Fincher. 2007. Opening the Door of the Computer 
Science Classroom: The Disciplinary Commons. In Proceedings of the 38th SIGCSE 
Technical Symposium on Computer Science Education (SIGCSE ’07). Association for 
Computing Machinery, New York, NY, 514–518. https://doi.org/10.1145/1227310. 
1227484 

[57] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018. 
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in 
the npm Ecosystem. In Proceedings of the 40th International Conference on Soft-
ware Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing 
Machinery, New York, NY, 511–522. https://doi.org/10.1145/3180155.3180209 

[58] Luther Tychonievich and Mark Sherriff. 2022. Engineering a Complete Cur-
riculum Overhaul. In Proceedings of the 53rd ACM Technical Symposium on 
Computer Science Education - Volume 1 (Providence, RI, USA) (SIGCSE 2022). 
Association for Computing Machinery, New York, NY, USA, 453–459. https: 
//doi.org/10.1145/3478431.3499287 

[59] Grant Wiggins and Jay McTighe. 2005. Understanding by Design (expanded 
2nd ed.). Association for Supervision and Curriculum Development (ACSD), 
Alexandria, VA. 

[60] Chris Wilcox. 2015. The Role of Automation in Undergraduate Computer Science 
Education. In Proceedings of the 46th ACM Technical Symposium on Computer 
Science Education (SIGCSE ’15). Association for Computing Machinery, New York, 
NY, 90–95. https://doi.org/10.1145/2676723.2677226 

[61] Alexey Zagalsky, Joseph Feliciano, Margaret-Anne Storey, Yiyun Zhao, and Weil-
iang Wang. 2015. The Emergence of GitHub as a Collaborative Platform for 
Education. In Proceedings of the 18th ACM Conference on Computer Supported 
Cooperative Work & Social Computing (CSCW ’15). Association for Computing 
Machinery, New York, NY, 1906–1917. https://doi.org/10.1145/2675133.2675284 

[62] Micah Zeller and Emily Symonds Stenberg. 2016. Faculty Require Online Distri-
bution of Student Work: Enter the Librarian. (Dec. 2016), 31–52. 

7 

https://doi.org/10.1080/14703297.2020.1786432
https://doi.org/10.1080/14703297.2020.1786432
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/3428029.3428053
https://doi.org/10.1145/3478431.3499421
https://doi.org/10.1145/3173553
https://doi.org/10.1109/WCCAIS.2014.6916568
https://doi.org/10.1109/WCCAIS.2014.6916568
https://doi.org/10.1109/EDUCON.2016.7474695
https://doi.org/10.1109/EDUCON.2016.7474695
https://doi.org/10.1145/3491140.3528278
https://doi.org/10.1145/3491140.3528278
https://doi.org/10.1145/2445196.2445386
https://doi.org/10.1145/3546581
https://doi.org/10.1109/FIE.2013.6684936
https://doi.org/10.1146/annurev.psych.52.1.397
https://doi.org/10.1146/annurev.psych.52.1.397
https://doi.org/10.1145/3545945.3569816
https://doi.org/10.1145/3368089.3409706
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3377814.3381711
https://doi.org/10.1016/j.wsif.2015.06.008
https://doi.org/10.1016/j.wsif.2015.06.008
https://doi.org/10.1145/3546096.3546099
https://doi.org/10.1109/FIE.2018.8658928
https://doi.org/10.1145/3059009.3072980
https://doi.org/10.1145/3059009.3072980
https://doi.org/10.1080/00131881.2018.1461573
https://doi.org/10.1145/3639474.3640056
https://doi.org/10.1007/BF02942603
https://doi.org/10.14702/JPEE.2023.331
https://doi.org/10.14702/JPEE.2023.331
https://doi.org/10.1145/3293881.3295785
https://doi.org/10.1145/1227310.1227484
https://doi.org/10.1145/1227310.1227484
https://doi.org/10.1145/3180155.3180209
https://doi.org/10.1145/3478431.3499287
https://doi.org/10.1145/3478431.3499287
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2675133.2675284

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 DevOps

	3 Recommendations
	3.1 continuous delivery (CD
	3.2 Product and Process
	3.3 Lean Management and Monitoring

	4 Discussion
	5 Conclusion
	Acknowledgments
	References



