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ABSTRACT
Academic advising encompasses a broad range of student support
services, including guidance on transfer credits, graduation require-
ments, major and minor declarations, and institutional policies.
However, traditional advising methods often face challenges related
to scalability, consistency, and accessibility. This paper presents a
Retrieval-Augmented Generation (RAG)-based chatbot designed to
optimize general academic advising by leveraging generative AI.
The model aims to enhance data retrieval, improving the precision
and relevance of advising responses. We evaluate the chatbot’s
effectiveness based on response accuracy, user satisfaction, and its
ability to address nuanced advising scenarios. Our findings indicate
that the RAG-based approach improves efficiency and accessibil-
ity in academic advising, providing a scalable AI-driven decision
support system for higher education institutions.

1 INTRODUCTION
Academic advising plays a crucial role in guiding students through
institutional policies, graduation requirements, transfer credit evalu-
ations, and major/minor declarations. However, traditional advising
systems often struggle with scalability, efficiency, and accessibility
[6]. Many students face long wait times, unclear or incomplete in-
formation, and limited access to advisors, particularly during peak
enrollment periods. These inefficiencies can lead to delays in aca-
demic progress, misunderstandings about graduation requirements,
and difficulties in credit transfer, ultimately impacting student suc-
cess.

To address these challenges, we propose EduRAG, a RAG-based
decision support system that enhances general academic advising
through AI-driven interaction. Unlike conventional rule-based ad-
vising tools, which rely on static databases or predefined responses,
EduRAG dynamically retrieves relevant institutional policies and
guidelines, such as academic calendars, while leveraging a large
language model (LLM) to generate accurate and context-aware re-
sponses. The chatbot supports students across various advising
topics, such as graduation requirements, transfer credit evaluations,
major/minor declarations, and institutional policies.

EduRAG delivers an interactive, 24/7 advising experience, pro-
viding real-time, personalized guidance to students across various
disciplines, including Computer Science, Data Science, Mathemat-
ics, Statistics, Physics and Engineering, tailoring recommendations
based on each student’s unique academic path.

The key objectives and contributions of the proposed work in-
clude:

• Designing a RAG-based chatbot for general academic
advising in various fields, focusing on areas beyond course
selection.

• Assessing the effectiveness of generative AI in handling
advising queries related to transfer credits, study strategies
and graduation pathways.

• Demonstrating the scalability and accessibility bene-
fits of AI-driven advising systems compared to traditional
models.

• Offering a technical perspective on implementing
RAG for decision support in higher education.

Preliminary findings indicate that RAG-based chatbots can sig-
nificantly improve response accuracy, consistency, and accessibility
in academic advising.

The remainder of this paper is structured as follows: Section
2 reviews related work in AI-driven academic advising. Section 3
details our methodology, including system architecture and imple-
mentation. Section 4 presents experimental results and evaluation
metrics. Section 5 discusses key findings, challenges, and future
directions, and Section 6 concludes the paper.

2 RELATEDWORK
2.1 Generative AI in Education and Academic

Advising
Recent advancements in Generative AI (GenAI), particularly large
language models (LLMs), have transformed academic support by
enabling personalized tutoring, automated feedback, and student
service chatbots [2]. AI-assisted advising reduces advisor work-
load and enhances response consistency but often struggles with
institution-specific policies.

Many institutions employ traditional machine learning tech-
niques to develop academic chatbots [7], utilizing approaches such
as self-supervised fine-tuning and reinforcement learning with hu-
man feedback (RLHF). Others opt for menu-driven chatbots, which
are cost-effective but less user-friendly.

Most prior research has focused on fine-tuning LLMs on custom
datasets, a process that typically requires extensive domain-specific
labeled data. However, fine-tuned models remain static unless re-
trained, limiting adaptability for future retrieval. In contrast, RAG
dynamically fetches the latest data from external sources, ensuring
up-to-date and policy-compliant responses. Our approach inte-
grates retrieval-based knowledge with GenAI to enhance accuracy
and relevance in academic advising.
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2.2 RAG in Research and Industry
RAG improves response accuracy by grounding AI outputs in
domain-specific documents, reducing hallucination [1]. RAG has
been applied in healthcare, legal analysis, and finance, with emerg-
ing use in adaptive learning [4]. However, its application to aca-
demic advising remains unexplored. Our work bridges this gap by
implementing a domain-specific RAG system to retrieve institu-
tional regulations, ensuring accurate and scalable advising.

Our work builds upon these prior studies by applying RAG tech-
niques to general academic advising. By integrating institutional
policy retrieval with generative AI, our system aims to provide stu-
dents with accurate, real-time guidance while ensuring scalability
and accessibility.

3 SYSTEM ARCHITECTURE & DESIGN
The core architecture of EduRAG is composed of several key com-
ponents working together to provide accurate and context-aware
responses to user queries. In this section, we discuss the key com-
ponents of the system architecture, the RAG pipeline, the design
choices made, and how these contribute to the system’s overall
functionality.

3.1 Key Components of the RAG Architecture
Our RAG-based system consists of the following primary compo-
nents (Figure 4):

• Data Collection and Preprocessing: The initial process
begins with web-scraping data from sources such as aca-
demic calendars, faculty websites and university resource
pages using the beautifulsoup4 library. All the collected
data then gets divided and formatted into 14 different .txt
files, each having content-specific data.

• Data Loading and Chunking: All the data then gets
loaded with a chunk_size of 1000 characters with an overlap
of 250 characters, to make sure we do not miss any crucial
data out.

• Vectorization: This process converts textual data into
vector representations using embeddings generated by Ol-
lama’s mxbai-embed-large with 512 token size. The goal
is to capture the semantic meaning of each document or
query, allowing for efficient similarity-based retrieval. All
embeddings then get stored in pgvector.

• Similarity Search: Once data has been vectorized, similar-
ity search is performed using efficient algorithms, such as
cosine similarity, to identify the most relevant documents
or pieces of information to answer user queries.

• Generative Model: After retrieval, the system uses a gen-
erative model (GPT or Ollama) to synthesize a human-like
response by conditioning on both the retrieved documents
and the user’s query.

• Vector Store (pgvector): To facilitate fast retrieval, vec-
torized data is stored in a specialized database (pgvector)
that supports similarity search over high-dimensional vec-
tors. This allows the system to quickly retrieve relevant
information based on user input.

3.2 The RAG Pipeline and Workflow

Figure 1: A depiction on how the RAG pipeline operates

The RAG pipeline follows a structured flow from user input to
output, ensuring that each stage of the process contributes to a
high-quality, accurate response (Figure 4):

(1) User Input: The process begins when the user interacts
with the chatbot, submitting a query related to academic
advising (e.g., "What are the graduation requirements for a
Computer Science major?").

(2) Vectorization and Query Encoding: The query is en-
coded into a vector representation using an embedding
model. This vector is then used for similarity search for
which it will return the top 3 results.

(3) Similarity Search: The query vector is compared to the
vectors of stored documents in the pgvector database us-
ing cosine similarity. The most relevant documents are
retrieved based on their proximity in the vector space.

(4) Generation and Response: Once relevant documents are
retrieved, they are passed to a generative model (such as
GPT or Ollama) along with the query. The model synthe-
sizes a response based on the retrieved documents and
returns it to the user.

(5) Message History and History-Aware Retrieval: To im-
prove context and the relevance of responses, the system
maintains a history of previous interactions. This history is
used in history-aware retrieval, where past messages are fac-
tored into the similarity search, ensuring that the context
is preserved across multiple exchanges.

3.3 Design Choices
3.3.1 Prompt Engineering. Effective prompt engineering is crucial
for optimizing chatbot performance in RAG-based systems. We
carefully designed and refined prompt templates to enhance re-
sponse accuracy, maintain relevance, and ensure compliance with
institutional policies.

• Contextual Prompting: Incorporating previous user queries
into prompts improved response relevance and coherence.

• Task-Specific Prompts: Tailored prompts for advising
tasks (e.g., transfer credit evaluations, graduation require-
ments) ensured domain-specific accuracy.

2
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• Response Filtering: The model was instructed to ignore
irrelevant user queries, preventing off-topic or misleading
answers.

• Source Attribution: Every response included a verifiable
source to enhance transparency and reliability.

• Document Retrieval: The chatbot was designed to pro-
vide PDFs for relevant applications when necessary.

Additionally, we developed a separate prompt template focused
on history-aware retrieval, enabling the model to retain context
across interactions for more informed advising.

Evolution of Prompt Design
In the initial design phase, the chatbot used simple, direct prompts

such as:
"You are a academic advisor for students. Ignore ir-
relevant questions asked."

However, responses were often generic and lacked institutional
specificity. Another issue we faced with this was that the model
used to hallucinate when it did not know the answer to a user query.
To address this, we refined the prompt to incorporate additional
context:

"You are an academic adivsor for UBC students. Only
answer relevant question, if you don’t know the an-
swer to something, reply I can only help you with
academic advising. Answer the question based on the
context below."

This improved response accuracy. Another feature we wanted
to integrate was source attribution. Hence, we engineering the chat
prompt template to incorporate this feature:

"You are an academic adivsor for UBC students. Only
answer relevant question, if you don’t know the an-
swer to something, reply I can only help you with
academic advising. Answer the question based on the
context below. In addition to your final answer also
return a source as a raw link. Do not say, Source: pro-
vided context, a source is always a URL. Here are all
the sources:
Sources: <list of sources>"

This iterative refinement ensured that responses remained grounded
in authoritative data while enhancing user experience.

3.3.2 Similarity Search: Cosine Similarity. The similarity search
relies on cosine similarity, a commonly used metric to measure
the cosine of the angle between two vectors in a vector space.
Mathematically, cosine similarity is defined as:

Cosine Similarity(𝐴, 𝐵) = 𝐴 · 𝐵
∥𝐴∥∥𝐵∥

Where:
• 𝐴 and 𝐵 are two vectors representing a query and a docu-

ment, respectively.
• 𝐴 · 𝐵 is the dot product of the vectors.
• ∥𝐴∥ and ∥𝐵∥ are the magnitudes (Euclidean norms) of the

vectors.
The cosine similarity measure ranges from −1 to 1, where 1 in-

dicates that the two vectors are identical (i.e., the documents are

highly similar), and 0 means there is no similarity. Cosine simi-
larity is efficient in high-dimensional spaces and well-suited for
comparing the semantic similarity of queries and documents.

Figure 2: Visualization of cosine similarity between two vec-
tors.

3.3.3 Message History and History-Aware Retrieval. One important
design choice in our system is the use of history-aware retrieval. This
approach helps maintain context across multiple interactions with
the chatbot. For example, when a student inquires about graduation
requirements and follows up with a question about credit transfer,
the system uses both the original question and the follow-up query
to retrieve more relevant documents and generate more accurate
responses. The history-aware retrieval ensures the system considers
the entire interaction, making it more conversational and effective.

3.3.4 Data Collection and Processing. Our data is sourced from
multiple channels to ensure accuracy and relevance in academic
advising.

• Web Scraping: Institutional websites, academic handbooks,
and official advising pages are scraped to extract up-to-
date information on graduation requirements, major/minor
policies, and transfer credits.

• Stored Text Files: Scraped data is stored in structured text
files, allowing for efficient access and preprocessing before
vectorization.

• Data Cleaning and Formatting: Raw textual data un-
dergoes cleaning to remove extraneous information (e.g.,
HTML tags) and is standardized for consistency. This en-
sures high-quality embeddings, improving similarity search
accuracy and reducing retrieval noise.

This structured approach ensures that our data remains current,
well-organized, and optimized for retrieval in the advising system.

3.4 Implementation Details
The system integrates LangChain for retrieval-augmented genera-
tion, FastAPI for backend efficiency, PostgreSQL with pgvector for

3
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vector storage, and OpenAI and Ollama models for language pro-
cessing, ensuring fast and scalable deployment. The user interface
is built with RemixJS and shadcn/ui.

For efficient document retrieval, we use pgvector to store high-
dimensional embeddings of institutional guidelines and user queries.
PostgreSQL’s indexing and querying capabilities enable fast simi-
larity searches, improving response accuracy and efficiency.

3.5 Additional Features
The data used for EduRAG allows it to perform several sophisticated
tasks, such as:

• Mathematical Calculations: EduRAG can calculate trans-
fer credits by applying mathematical formulas based on
the credit value of transferred courses and the institution’s
conversion rates.

• Providing PDF Files: EduRAG can retrieve and provide
downloadable advising sheets, such as engineering advis-
ing documents or transfer credit forms, directly from the
interface.

3.6 Design Rationale
The architectural choices made in this system were driven by the
need to balance scalability, accuracy, and accessibility. The use of
vectorization and pgvector ensures that we can efficiently handle
large datasets and provide fast, relevant responses. The choice to
use cosine similarity for similarity search enables precise document
retrieval, ensuring that students receive accurate and context-aware
guidance. By incorporating features like history-aware retrieval, the
system can maintain context over multiple interactions, enhancing
the overall user experience. These design decisions ultimately result
in a robust, scalable academic advising system that can efficiently
support students across various advising tasks.

4 DEMONSTRATION AND EVALUATION
In this section, we present the usability testing and evaluation
results of our RAG-based academic advising chatbot. We conducted
demonstrations with students from the Computer Science (CMPS)
and Engineering programs, followed by a detailed analysis of the
feedback, case studies, and performance metrics.

4.1 Initial Usability Testing
We evaluated the chatbot’s usability with students from Computer
Science (CMPS) and Engineering, who interacted with it for tasks
like checking graduation requirements, credit transfers, and pro-
gram policies.

4.1.1 CMPS Student Feedback. CMPS students appreciated the
chatbot’s clarity and quick retrieval of graduation requirements,
particularly for electives and credit transfers. Some suggested more
detailed explanations for complex policies, such as transfer credit
applications.

4.1.2 Engineering Student Feedback. Engineering students valued
the chatbot’s ability to present PDF advising sheets and answer
course prerequisite questions. However, like the CMPS group, they
desired more contextual explanations for special cases like course
substitutions.

Overall, students found the chatbot helpful but highlighted the
need for improved explanation depth and a more intuitive interface.

4.2 Case Studies and User Scenarios
To demonstrate the chatbot’s effectiveness, we present key use
cases:

4.2.1 GoGlobal Program. Students in the GoGlobal study abroad
program face challenges with credit transfer. In a test scenario, a
student inquired about international course evaluations, and the
chatbot provided relevant policies, retrieved transfer guidelines,
and offered a PDF advising sheet. This case highlights the chatbot’s
role in streamlining complex advising tasks.

Figure 3: GoGlobal Student User Case Scenario

4.2.2 Course and Credit Transfers. A first year student majoring
in Data Science had queries related to certain keywords in the
academic calendar. It asked EduRAG for advice on those words

4.3 Backend Testing with PyTest
To ensure the reliability and correctness of our backend, we imple-
mented a comprehensive testing suite to validate API responses,
handling user queries, and verifying logical equivalency using GPT-
4. Specifically, we focused on:

• Irrelevant Question Handling: The system is tested to
reject non-academic queries by returning a predefined re-
sponse.

• Credit and Transfer Credit Inquiries: We verify that
queries related to credit requirements and transfer credit
evaluations yield accurate responses.

• Graduation and Degree Planning: The chatbot is tested
for inquiries regarding degree progression, graduation re-
quirements, and document shipping details.

• Major/Minor Declarations: The chatbot’s ability to pro-
vide correct information onmajor andminor self-declaration
is assessed.

• Conversation History Awareness: To test context re-
tention, we simulate a multi-turn conversation where the
chatbot should recall previous exchanges.

To validate chatbot responses beyond simple string comparison,
we employ GPT-4 for logical equivalence assessment. A dedicated

4
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Figure 4: First Year Student User Case Scenario

function queries GPT-4 to determine if two responses convey the
same meaning, enhancing test robustness.

Algorithm 1 Logical Equivalence Assessment
1: Input: Two response strings, 𝑠𝑡𝑟1 and 𝑠𝑡𝑟2
2: Output: Boolean value indicating logical equivalence
3: Send system message and user query to GPT-4
4: Parse response to extract decision string
5: if response contains "true" then
6: return True
7: else if response contains "false" then
8: return False
9: else
10: return Error

4.4 Evaluation Metrics
To assess the performance of our RAG system, we evaluate retrieval
accuracy, response quality, and system efficiency. The results are
summarized in Table 1.

Retrieval Performance
• Recall@5: Measures the proportion of queries for which

a relevant document appears in the top 5 retrieved results.
Higher values indicate better retrieval effectiveness.

• Mean Reciprocal Rank (MRR): Computes the average
reciprocal rank of the first relevant document across queries,
emphasizing how early relevant documents appear in ranked
results.

Table 1: Evaluation metrics for the RAG system.

Metric Result
Recall@5 87.2%
MRR 0.79
NDCG@5 0.84
BLEU Score 41.6
ROUGE-L 56.3
Response Time (ms) 920
Token Efficiency (avg tokens/query) 285

• Normalized Discounted Cumulative Gain (NDCG@5):
Evaluates ranking quality by assigning higher importance
to correctly ranked relevant documents, penalizing incor-
rect ordering in the top 5 results.

Generation Quality
• BLEU Score: A precision-based metric that compares gen-

erated responses to reference answers using n-gram overlap,
commonly used in machine translation.

• ROUGE-L: A recall-orientedmetric that evaluates the longest
common subsequence between generated and reference re-
sponses, measuring fluency and coherence.

System Efficiency
• Response Time (ms): The average time taken to generate a

response after retrieving relevant documents. Lower values
indicate faster response generation.

• Token Efficiency: The average number of tokens pro-
cessed per query, influencing API cost and latency. Lower
values improve cost-effectiveness without degrading re-
sponse quality.

4.5 Discussion of Results
EduRAG demonstrates strong retrieval and response accuracy, with
Recall@5 of 87.2% and MRR of 0.79, ensuring relevant document
retrieval. However, recall can be improved for complex queries.
The high NDCG@5 (0.84) confirms effective ranking, while BLEU
(41.6) and ROUGE-L (56.3) scores indicate coherent, high-quality
responses.

With an average response time of 920ms and token efficiency of
285 tokens per query, the system balances speed and cost-effectiveness.
Student feedback highlights its success in diverse advising scenar-
ios, though improvements in explanation depth and conversational
flow are needed. Future work will focus on enhancing retrieval,
refining responses, and improving interactivity.

5 DISCUSSION
The academic advising chatbot developed in this study demon-
strates several strengths, while also presenting a few limitations.
In this section, we reflect on the overall development process, the
challenges faced, and the strengths and limitations of the system.

5.1 Strengths
The chatbot’s main strength lies in its ability to quickly retrieve and
present accurate academic advising information from a vast dataset.
Using the RAG approach, the chatbot is able to combine generative

5
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capabilities with a retrieval mechanism to provide responses that
are both contextually relevant and grounded in the provided data.
Some of the key strengths of the system include:

• High accuracy and precision: The system consistently
provides correct and relevant information, as demonstrated
by the high accuracy and precision scores.

• Quick response times: The chatbot processes queries
rapidly, ensuring a smooth user experience with minimal
delay.

• Ability to handle complex advising scenarios: The chat-
bot excels in providing tailored advice for unique academic
situations, such as transfer credit evaluation and study
abroad program details.

• Scalability: The RAG-based system is scalable and can
handle a wide variety of queries related to graduation re-
quirements, transfer credits, and major/minor information.

5.2 Limitations
Despite its strengths, the chatbot has several limitations:

• Limited contextual understanding: While effective for
straightforward inquiries, the chatbot may struggle with
complex, nuanced questions that require deep reasoning or
domain expertise.

• Reliance on data quality: The accuracy of responses
depends on the quality and completeness of the dataset.
Outdated or missing information can lead to incorrect or
misleading answers.

• AI bias and hallucinations: Large languagemodels can in-
herit biases present in their training data and may generate
hallucinated responses—plausible but incorrect informa-
tion—potentially leading to misinformation.

• Transparency and source attribution: The system does
not always explicitly cite sources, making it difficult for
users to verify the credibility of responses. Enhancing trans-
parency through source attribution could improve trust.

• Limited interactivity: The chatbot could benefit from im-
proved conversational capabilities, such as dynamic follow-
up questions and adaptive responses based on user input.

5.3 Mitigating Biases in LLM-Based Advising
To address biases and hallucinations, several mitigation strategies
are employed:

• Curated knowledge sources: The chatbot relies on vetted
academic data to minimize exposure to biased or misleading
information.

• Human-in-the-loop oversight: While automated, the sys-
tem allows human advisors to review and refine responses,
ensuring accuracy in critical scenarios.

• Bias detection mechanisms: Future iterations could inte-
grate bias-detection techniques to flag and adjust responses
that exhibit skewed perspectives.

• Source transparency: Enhancing citation mechanisms
within the chatbot will allow users to verify the origins of
retrieved information.

These measures help improve reliability while maintaining AI-
assisted academic advising as a supportive tool rather than a stan-
dalone replacement for human expertise.

5.4 Challenges Encountered
The development process was not without its challenges. Some of
the key issues encountered during the development phase included:

• Data formatting and cleaning: The process of transform-
ing raw academic data into a structured format suitable for
training the chatbot was time-consuming. Data cleaning,
such as ensuring consistency and removing redundancies,
was essential to improve the accuracy of the system.

• Fine-tuning the model for specific tasks: The task-
specific nature of the queries required continuous fine-
tuning of the model to ensure high accuracy in real-world
scenarios.

• System integration and testing: Integrating various com-
ponents, such as the vector store (pgvector), similarity
search methods, and chatbot interface, proved to be com-
plex, requiring multiple iterations and debugging.

6 CONCLUSION AND FUTUREWORK
This paper presented EduRAG, a chatbot-based academic advising
system leveraging RAG architecture to provide accurate, context-
aware guidance on graduation requirements, transfer credits, and
major/minor selection. By integrating history-aware retrieval and
vector-based storage (pgvector), the system enhances advising effi-
ciency while reducing student wait times.

Key areas for improvement include expanding data coverage, re-
fining conversational flow, and broadening advising services. Future
enhancements will focus on reinforcement learning for response
generation, multi-modal interactions, and adaptive learning for
personalized support.

While EduRAG streamlines routine advising, it does not replace
human advisors. Given LLM limitations, it serves as a complemen-
tary tool, improving accessibility and efficiency while ensuring
students retain access to personalized guidance.
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