
C-ing Beyond AI: A Cloud-Based Approach to Authentic
Programming Assessment

Ildar Akhmetov
Khoury College of Computer Sciences

Northeastern University
Vancouver, B.C., Canada

i.akhmetov@northeastern.edu

Maryam Tanha
Khoury College of Computer Sciences

Northeastern University
Vancouver, B.C., Canada

m.tanha@northeastern.edu

Logan W. Schmidt
Khoury College of Computer Sciences

Northeastern University
Vancouver, B.C., Canada

l.schmidt@northeastern.edu

Saeed Yazdanian
Khoury College of Computer Sciences

Northeastern University
Vancouver, B.C., Canada

s.yazdanian@northeastern.edu

Abstract
Recent advances in large language models (LLMs) introduce un-
precedented challenges for academic integrity in programming 
courses. This paper presents a cloud-based programming assess-
ment system that creates ephemeral coding environments to pre-
serve the authenticity of student work and deter AI-assisted pla-
giarism. Using Terraform and AWS, the system provisions individ-
ualized virtual machines for in-person assessment, mirroring the 
course environment without granting access to pre-existing code or 
external resources. Integrated with GitHub Classroom, the system 
handles assignment distribution, code submission, and resource 
clean-up. We discuss the design, cost analysis, and preliminary 
observations from implementation in a CS 2 course in C at North-
eastern University (Vancouver). Preliminary results indicate that 
this controlled environment promotes student engagement and 
discourages reliance on AI for routine tasks. Future work will in-
clude studying how this approach impacts learning outcomes and 
AI usage patterns.

Keywords
Assessment, Programming, Cloud Computing, Academic Integrity, 
Large Language Models, Terraform, AWS
ACM Reference Format:
Ildar Akhmetov, Maryam Tanha, Logan W. Schmidt, and Saeed Yazdanian. 
2025. C-ing Beyond AI: A Cloud-Based Approach to Authentic Programming 
Assessment. In Proceedings of the 27th Western Canadian Conference on 
Computing Education (WCCCE). April 28–29, 2025, Calgary, Canada. 2 
pages. https://doi.org/10.1145/10.60770/4bhf-g950

1 Introduction
Recent developments in large language models (LLMs) such as Chat-
GPT, Gemini, and Claude pose new risks for academic integrity. 
Students can easily use AI tools to solve homework or take-home

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WCCCE ’25, Calgary, AB, Canada
© 2025 Copyright held by the authors. 
https://doi.org/10.1145/10.60770/4bhf-
g950

exams, making it difficult to assess their mastery of fundamental
concepts. While remote-proctoring solutions and plagiarism detec-
tion tools have been used to mitigate cheating, these methods often
fail to match the pace of AI advancements and raise ethical and
privacy concerns [1, 2, 5, 8, 9].

Educational researchers have examined how LLMs transform
both teaching and learning, highlighting the need for new instruc-
tional designs and assessment strategies that respond to AI technol-
ogy’s rapid diffusion [4, 7]. As evidence shows that reliance on AI
for routine tasks can hinder deeper conceptual understanding, it is
imperative to redesign assessments that accurately measure knowl-
edge acquisition. Educators have proposed incorporating in-person
practical evaluations, code-walks, and assignments that emphasize
problem-solving and critical thinking over simple solution genera-
tion.

In line with the growing trend of online evaluation tools [3, 6],
this paper describes a cloud-based approach to creating short-lived,
controlled coding environments. Our goal is to preserve student
work authenticity by mirroring the course environment while pre-
venting access to previously saved code or external resources. We
implemented this system in a CS2 course (algorithms, data struc-
tures and basic computer systems using C) at Northeastern Uni-
versity (Vancouver). While not a formal study, preliminary ob-
servations suggest that controlled, face-to-face assessments may
reduce reliance on AI assistants and encourage deeper engagement
with course material. This paper outlines the system design, cost-
effectiveness, and avenues for future research.

2 Cloud-based Programming Assessment
System

Our cloud-based assessment system provides ephemeral, isolated
programming environments that replicate the environment used in
the course. The course requires students to write C programs using
a specific toolchain on Rocky Linux, employing vim as the primary
text editor. Our goals are summarized as follows: Faithfully emulate
the course environment for in-person exams; Prevent students from
accessing pre-existing work or external resources;Allow instructors
to manage student instances efficiently; Minimize complexity and
cost.

https://orcid.org/0000-0002-6660-8890
https://orcid.org/0000-0001-7281-1943
https://orcid.org/0009-0003-4643-2490
https://orcid.org/0009-0006-4916-8228
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/nnnnnnn.nnnnnnn


WCCCE ’25, April 28–29, 2025, Calgary, AB, Canada

Akhmetov et al.

2.1 System Architecture
We use Terraform1 for infrastructure as code, deploying individual
AWS EC2 instances for each student at the beginning of the as-
sessment. These instances are destroyed upon completion. GitHub
Classroom serves as the assignment distribution and submission
platform, integrated through the GitHub REST API to automate
repository creation and access control.

Figure 1: Architecture of the cloud-based programming as-
sessment provisioning system

2.2 Implementation Details
Our Python Flask application offers a dashboard that manages stu-
dent lists, provisions EC2 instances, and monitors their lifecycle. It
imports GitHub usernames for upcoming sessions, generates and
configures EC2 instances using Terraform, assigns each instance
a unique password and GitHub deploy key for repository access,
and tracks the instance states. Once assessments have been com-
pleted, the application displays instance details and initiates their
destruction to clean up resources.

Each instance is configured with Rocky Linux, gcc/clang, vim,
and any additional dependencies required. It clones the student’s
repository from GitHub upon launch and allows the student push
their changes via the deploy key. Once the student’s session ends,
instructors use the dashboard to terminate the instance and revoke
write access to the repository (using GitHub REST API).

2.3 Cost Analysis
We evaluated system costs during the Spring 2025 offering of CS2,
which enrolled 71 students. Students were assessed in groups of 9
and worked for up to one hour on a t2.small AWS instance. Over
multiple sessions, the total AWS cost was approximately CA$3.00,
or CA$0.04 per student. To control costs, the system provisions
instances only for upcoming sessions (usually 1–2 hours in advance)
and promptly tears them down after completion.

3 Future Work
Our observations suggest students increased their engagement with
coursematerials following the in-person coding assessment. Several
reported a shift away from routine reliance on AI tools, recognizing
1https://www.terraform.io

Figure 2: Screenshot of the provisioning dashboard showing
instances for each student

that authentic practice was essential for success and mastery of
fundamental course concepts. In upcoming semesters, we plan to
conduct a study on the system’s impact on learning outcomes andAI
usage, expand its use in other programming-intensive courses, and
release the source code and documentation for broader educational
adoption. By exploring these directions, we will refine methods for
assessing genuine coding ability in an era where AI assistance is
increasingly prevalent.

References
[1] Debby RE Cotton, Peter A Cotton, and J Reuben Shipway. 2024. Chatting and

cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in
education and teaching international 61, 2 (2024), 228–239.

[2] Héctor Galindo-Domínguez, Lucía Campo, Nahia Delgado, and Martín Sainz de la
Maza. 2025. Relationship between the use of ChatGPT for academic purposes
and plagiarism: the influence of student-related variables on cheating behavior.
Interactive Learning Environments (2025), 1–15.

[3] J Geetha, DS Jayalakshmi, E Naresh, and N Sreenivasa. 2024. Lightweight Cloud-
Based Solution for Digital Education and Assessment. Science & Technology
Libraries 43, 3 (2024), 274–286.

[4] Ahmed M Hasanein and Abu Elnasr E Sobaih. 2023. Drivers and consequences of
ChatGPT use in higher education: Key stakeholder perspectives. European journal
of investigation in health, psychology and education 13, 11 (2023), 2599–2614.

[5] Muntasir Hoq, Yang Shi, Juho Leinonen, Damilola Babalola, Collin Lynch, Thomas
Price, and Bita Akram. 2024. Detecting ChatGPT-generated code submissions
in a CS1 course using machine learning models. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1. 526–532.

[6] Magendran Munisamy, SZ Osman, and Mageswaran Sanmugam. 2024. Code, click,
learn: a systematic review of online assessment tools in 21st century programming
education. Int J Mod Educ 6, 20 (2024), 358–377.

[7] Iris Cristina Peláez-Sánchez, Davis Velarde-Camaqui, and Leonardo David
Glasserman-Morales. 2024. The impact of large language models on higher ed-
ucation: exploring the connection between AI and Education 4.0. In Frontiers in
Education, Vol. 9. Frontiers Media SA, 1392091.

[8] Zachary Taylor, Cy Blair, Ethan Glenn, and Thomas Ryan Devine. 2023. Plagiarism
in entry-level computer science courses using ChatGPT. In Congress in Computer
Science, Computer Engineering, & Applied Computing (CSCE). IEEE, 1135–1139.

[9] Yunkai Xiao, Soumyadeep Chatterjee, and Edward Gehringer. 2022. A new era of
plagiarism the danger of cheating using AI. In 20th International Conference on
Information Technology Based Higher Education and Training (ITHET). IEEE, 1–6.

https://www.terraform.io

	Abstract
	1 Introduction
	2 Cloud-based Programming Assessment System
	2.1 System Architecture
	2.2 Implementation Details
	2.3 Cost Analysis

	3 Future Work
	References

