Varphi: A Description Language for Turing Machines

Hassan El-Sheikha
University of Toronto
Toronto, Ontario, Canada

Abstract

Conventional representations of Turing machines often overwhelm
students of computability theory and obscure fundamental com-
putational ideas. Varphi is a domain-specific language designed to
streamline Turing machine specification with a minimalist syntax
and integrated debugging tools. In preliminary classroom trials
involving 184 participants tackling deliberately challenging tasks,
88% of students successfully completed them using Varphi, high-
lighting the tool’s potential utility. This paper presents a technical
overview of Varphi and analyzes its pedagogical benefits.

CCS Concepts

« Theory of computation — Abstract machines; Turing ma-
chines; » Software and its engineering — Domain specific
languages; Syntax; Semantics; Interpreters.

Keywords

Turing Machines, Computer Science Education, Domain-Specific
Languages

ACM Reference Format:

Hassan El-Sheikha and Mohammad A. Mahmoud. 2025. Varphi: A Descrip-
tion Language for Turing Machines. In Proceedings of Western Canada Con-
ference on Computing Education 2025 (WCCCE °25). 2 pages. https://
doi.org/10.60770/wzt9-s649

1 Introduction

Computability theory and Turing machines lie at the heart of com-
puter science education. Yet, the conventional representations of
Turing machines—diagrams and tables—often
overwhelm students with unnecessarily complex and ambiguous
forms. These varied representations tend to overshadow the
elegance of Alan Tur-ing’s original model, shifting student
attention away from grasping core computational ideas.

Existing tools like JFLAP provide visual aids for designing
Turing machines, but may lack integration with automated code
grading systems since they are graphical tools rather than
programming lan-guages [3]. Meanwhile, existing languages like
Turing Machine Sim-ulation Language (TMSL) may be too abstract
for Turing machine theory—featuring constructs like loops—and
often lack debugging tools [2].

(0@

WCCCE °25, Calgary, AB
© 2025 Copyright held by the owner/authors.
https://doi.org/10.60770/wzt9-s649

transition

This work is licensed under an
Attribution 4.0 International (CC-BY 4.0) license.

Mohammad A. Mahmoud
University of Toronto
Toronto, Ontario, Canada

To address these challenges, we introduce Varphi—a domain-
specific language that simplifies Turing machine representation.
This paper details its design, implementation, and preliminary class-
room trials in a third-year computability theory course, the results
of which suggest enhanced student understanding and problem-
solving skills. By focusing on core computational concepts and
merging theory with practical coding, Varphi offers a promising,
low-barrier approach to teaching Turing machines.

2 Technical Overview

2.1 Syntax and Semantics

Each Varphi program consists of transition rules that specify:
(1

(2

(3

(

(

the current state,
the symbol at the current tape cell,
the next state,

= T = —

4) the symbol to write at the current tape cell, and
5) the head movement (one cell left or right).

This rule format corresponds with the standard unary Turing
machine model with a single two-way infinite tape, where the blank
symbol is denoted by 0. For example, a Varphi program describing
a machine that adds one to a (unary) number is shown below:

q0 1 q0 1 R
q0 0 q1 1 L

Varphi adopts a "top-left" convention, meaning the initial state
in the first transition rule is designated as the initial state of the
described machine (in the example program above, the initial state
would be q0).

2.2 Implementation and Usage

Turing machines described in Varphi are executed using the light-
weight Varphi Interpreter (vpi), a dependency-free tool that simu-
lates a universal Turing machine [4]. Users supply an input tape
and receive an output tape after execution. For example, below is a
shell session where the addition-by-one machine is simulated:

$ vpi -c addl.vp
Input Tape: 111
Output Tape: 1111

For debugging, invoking vpi with the -d flag initiates a step-
by-step simulation. During debugging, the current tape cell is
enclosed in square brackets ([]), and the cell that contained the
leftmost tally on the input tape is marked with curly braces ({}):
$ vpi -d addl.vp
Input Tape: 111
State: q0
Tape: [{1}]11
Press ENTER to step ...

Additionally, the Varphi language extension for Microsoft Visual
Studio Code (VS Code) enhances the user experience by providing

https://orcid.org/0000000280306290
https://orcid.org/0009000923531588
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://creativecommons.org/licenses/by/4.0/

WCCCE 25, April 28-29, 2025, Calgary, AB

syntax highlighting, integrated simulation, and a graphical debug-
ger that highlights the next line of execution. This extension is
especially useful for users less familiar with command-line inter-
faces.

RUN AND DEBUG ¥ addlvp X

 VARIABLES C D2 ¥ T O 0 ¥ addlvp

Machine Variables D 1 go1ge1R
q0 0 q1 1 |

Figure 1: Varphi Visual Studio Code Debug Session.

3 Evaluation and Evidence

Preliminary feedback from a cohort of mathematics and computer
science students enrolled in a third-year undergraduate computabil-
ity course is encouraging. In an evaluation, participants were given
two hours to review Varphi’s documentation and experiment freely
with it, followed by interaction with a "mystery” Varphi program
(35 lines long) deliberately designed to cause challenges for manual
analysis (i.e., extremely tedious to interpret by hand). Subsequently,
they were instructed to report, using the Varphi Interpreter, the
machine’s output for a lengthy input tape (containing 28 tallies)
and to identify the function computed by the machine. Finally, they
were asked to provide feedback on Varphi and describe how it could
help them and future students.

3.1 Quantitative Analysis

Based on data aggregated from 184 students, the average rating
of Varphi was 4.28 out of 5 with a standard deviation of 0.97. The
documentation received an average rating of 4.23 with a standard
deviation of 1.08. Additionally, 88% of student submissions were
correct.

Given the task’s deliberate difficulty for manual analysis, a cor-
rectness rate of 88% is a noteworthy outcome. While it is reasonable
to consider why the remaining 12% did not arrive at the correct an-
swer, the high success rate and positive ratings suggest that Varphi
was generally perceived as intuitive and self-explanatory.

3.2 Qualitative Analysis

The qualitative feedback underscores several key themes. Many
students emphasized the immediate benefits of Varphi’s features:
multiple students noted that the debugger was extremely useful,
while others highlighted the ease of integration and mentioned that
they would love to see the tool become a part of the course. Such
comments reveal that Varphi is not only functionally effective but
also has the potential to be embedded within the curriculum to
enhance practical learning. On the more critical side, many students
also suggested creating a web-based Varphi environment for run-
ning and debugging programs through a web browser, as discussed
in Section 5 (Future Work).

4 Pedagogical Benefits

Varphi’s uniform syntax and integrated debugging tools directly
address key challenges in teaching Turing machines. Preliminary
classroom trials indicate several pedagogical benefits:

El-Sheikha et al.

e Reduced Cognitive Load: By replacing ambiguous natural
language descriptions with structured rules, Varphi allows
students to concentrate on algorithmic logic.

e Enhanced Engagement: The interactive debugging tools,
especially within familiar integrated development environ-
ments like VS Code, transform a traditionally abstract topic
into a hands-on learning experience. Student feedback re-
inforces that Varphi not only demystifies Turing machine
operations but also promotes active experimentation and
deeper understanding.

e Error Localization: Varphi’'s compiler flags syntax errors
(such as invalid state names or formatting issues) during
compilation. This immediate feedback helps students correct
mistakes early, unlike handwritten diagrams where errors
may go unnoticed until manual grading.

e Scalability: The minimalist design makes it feasible for stu-
dents to build more complex machines, even for projects sim-
ulating interactive games. By supporting descriptive state
names (e.g., qRock or qTie for a game like "Rock, Paper, Scis-
sors"), Varphi encourages a modular approach that mirrors
high-level programming practices.

5 Future Work

Building on these promising results, future efforts will focus on:

e Improved Usability: Exploring the development of a web-
based interface to further lower barriers to entry.

o Integration with Autograders: Integrating Varphi with
automated grading systems like MarkUs in large-scale ed-
ucational settings, which have been shown to decrease as-
sessment times and promote better adherence to deadlines
[1].

¢ Quantitative Studies: Conducting controlled, pre-/post-
assessments and detailed error analyses to rigorously eval-
uate learning gains and debugging efficiency compared to
existing tools.

¢ Extending Language Features: Expanding the language to
support richer Turing machine variants (e.g., those with mul-
tiple tapes and arbitrary alphabets) to cater to advanced the-
oretical coursework or research, while maintaining Varphi’s
clarity.

References

[1] Morgan Magnin, Guillaume Moreau, Nelle Varoquaux, Benjamin Vialle, Karen
Reid, Mike Conley, and Severin Gehwolf. 2012. MarkUs: An Open-Source Web
Application to Annotate Student Papers On-Line. Proceedings of the ASME 11th
Biennial Conference On Engineering Systems Design And Analysis (ESDA 2012) (07
2012). doi:10.1115/ESDA2012-82141

[2] Isaac McGarvey, Joshua Gordon, Keerti Joshi, and Snehit Prabhu. 2008. TMSL
(Turing Machine Simulation Language): Language Manual and Project Report.
Technical Report. https://www.cs.columbia.edu/~sedwards/classes/2008/w4115-
fall/reports/TMSL.pdf

[3] SusanHRodger and Thomas W Finley. 2006. JFLAP: an interactive formal languages
and automata package. Jones & Bartlett Learning.

[4] Alan Turing. 1936. On computable numbers, with an application to the Entschei-
dungs problem. Proceedings of the London Mathematical Society Series/2 (42) (1936),
230-42.

https://doi.org/10.1115/ESDA2012-82141
https://www.cs.columbia.edu/~sedwards/classes/2008/w4115-fall/reports/TMSL.pdf
https://www.cs.columbia.edu/~sedwards/classes/2008/w4115-fall/reports/TMSL.pdf

	Abstract
	1 Introduction
	2 Technical Overview
	2.1 Syntax and Semantics
	2.2 Implementation and Usage

	3 Evaluation and Evidence
	3.1 Quantitative Analysis
	3.2 Qualitative Analysis

	4 Pedagogical Benefits
	5 Future Work
	References

