Bounded Bias A-Optimal Designs for Regression Models Shawn X. Liu Department of Mathematics and Computing Mount Royal University June, 2020 Copyright and all rights reserved by the author. This is a pre-print. Abstract In 1992, Doulas Wiens suggested a problem that considers the optimal design minimizing the variance of the estimator of the parameters of regression function when the fitted model is correct, subject to a bound on the bias term which occurs when the true model is different from the assumed one. The corresponding optimal designs can be called bounded bias optimal designs. Some general results for D-optimality was obtained and published (see Liu and Wiens, 1997). In this paper, we study mainly A-optimal designs. For some special cases of bounded functions, explicitly design measures are given. Key Words and Phrases: approximately regression models, bounded bias, optimal design, robustness 1. Introduction The robust optimal design can be traced back to 1950โ€™s. Box and Draper (1959) noticed that the strict formulation of the regression function is dangerous in the situations when the โ€œtrueโ€ regression function is only approximated by the assumed one. The problem of optimal design has been studied extensively by many authors. The famous theorem about the equivalence of D-optimal and minimax designs was due to Kiefer and Wolfowitz (1960). Many topics about optimal design theory can also be found in Fedorov (1972). There is also a major consideration in robust experimental design that dealing with the possible model violations. Started from Box and Draper (1959), the problem of finding robust design has been studied by many researchers in different aspects. For details, see Marcus and Sacks (1977), Pesotchinsky (1982), Li (1984), Wiens (1992) Blanchard, Field and Ronchetti (1997), Agostinelli (2002) and Khan, Van Aelst and Zammar (2007) to name a few. In this paper, we assume the following regression model: ๐‘ฆ๐‘– = ๐œฝ๐‘‡ ๐’‡(๐‘ฅ๐‘– ) + ๐œ–๐‘– ๐‘– = 1, โ€ฆ , ๐‘›, where ๐œฝ๐‘‡ = (๐œƒ0 , ๐œƒ1 , โ€ฆ , ๐œƒ๐‘โˆ’1 ), ๐’‡๐‘‡ (๐‘ฅ) = (1, ๐‘ฅ, โ€ฆ , ๐‘ฅ ๐‘โˆ’1 ), and ๐œ–๐‘– โ€ฒ๐‘  are independent and identically distributed random variable with mean 0 and some constant unknown variance ๐œŽ 2 . However it is very often that the โ€˜trueโ€™ response is the following: ๐‘ฆ๐‘– = ๐œฝ๐‘‡ ๐’‡(๐‘ฅ๐‘– ) + ๐‘ฅ ๐‘ ๐œ“(๐‘ฅ ) + ๐œ–๐‘– ๐‘– = 1, โ€ฆ , ๐‘›, where ๐œ“ โˆˆ ฮจ = {๐œ“ โˆถ |๐œ“(๐‘ฅ )| โ‰ค โˆ…(๐‘ฅ ) ๐‘œ๐‘› ๐‘† = [โˆ’1, 1]} and โˆ…(๐‘ฅ) is a known function with certain properties. Then we have ๐ธ [๐‘ฆ|๐‘ฅ] = ๐œฝ๐‘‡ ๐’‡(๐‘ฅ) (1.1) ๐ธ [๐‘ฆ|๐‘ฅ] = ๐œฝ๐‘‡ ๐’‡(๐‘ฅ ) + ๐‘ฅ ๐‘ ๐œ“(๐‘ฅ) (1.2) and ฬ‚ be the least squares estimator of ๐œฝ. Under (1.2), we have Let ๐œฝ ฬ‚ โˆ’ ๐œฝ)(๐œฝ ฬ‚ โˆ’ ๐œฝ)๐‘‡ ] = ๐‘€๐‘†๐ธ (๐œ“, ๐œ‰ ) = ๐ธ[(๐œฝ ๐œŽ 2 โˆ’1 ๐ต (๐œ‰ ) + ๐ต โˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )๐‘‡ ๐ตโˆ’1 (๐œ‰) ๐‘› 1 ฬ‚ โˆ’ ๐œฝ)] = ๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ ) where ๐ต(๐œ‰ ) = โˆซ ๐’‡(๐‘ฅ )๐’‡๐‘‡ (๐‘ฅ)๐‘‘๐œ‰(๐‘ฅ) and ๐’ƒ(๐œ“, ๐œ‰ ) = and ๐ธ[(๐œฝ โˆ’1 1 โˆซโˆ’1 ๐’‡(๐‘ฅ )๐‘ฅ ๐‘ ๐œ“(๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ). Here ๐œ‰ is a design measure belong to some set โ„ฑ. Let โ„’ [๐‘€๐‘†๐ธ (๐œ“, ๐œ‰ )] โˆถ= ๐‘ก๐‘Ÿ[๐‘€๐‘†๐ธ(๐œ“, ๐œ‰ )] = = ๐œŽ2 ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ ) + ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )๐‘‡ ๐ตโˆ’1 (๐œ‰) ๐‘› ๐œŽ2 ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ ) + ๐‘ก๐‘Ÿ ๐ต๐‘–๐‘Ž๐‘ (๐œ“, ๐œ‰ ) ๐‘› where ๐‘ก๐‘Ÿ[๐ต๐‘–๐‘Ž๐‘ (๐œ“, ๐œ‰ )] = ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )๐‘‡ ๐ตโˆ’1 (๐œ‰). We consider the following problem, called bounded bias A-optimal design, that ๐‘š๐‘–๐‘›๐œ‰๐œ–โ„ฑ ๐‘ก๐‘Ÿ ๐ตโˆ’1 (๐œ‰ ) ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘. When ๐œ“(๐‘ฅ) โ‰ก 0, the problem becomes ๐‘š๐‘–๐‘›๐œ‰๐œ–โ„ฑ ๐‘ก๐‘Ÿ ๐ตโˆ’1 (๐œ‰ ), which is the usual A-optimal design. Ideally, we hope that ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| will be achieved on the boundary function โˆ…. It could be true in some cases, see Liu and wiens (1997). We have that ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )||2 = ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ™๐‘– , ๐œ‰ )||2 (1.3) where ๐œ™๐‘– (๐‘ฅ) = (๐‘ ๐‘”๐‘›๐‘ฅ )๐‘–โˆ’1 ๐œ™(๐‘ฅ). However it is not true in general. A contra-example will be given in Section 2. This will raise difficulty to maximize the loss function over the class ฮจ. The cause of the difficulty is due to the non-linearity and non-convexity of the ๐ตโˆ’2 (๐œ‰) as a function of ๐œ‰. Here are some possible ways to overcome this difficulty: (i) (ii) (iii) Let ฮจ โˆ— = {๐œ“ โˆถ ๐œ“ โˆˆ ฮจ, ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(โˆ…๐‘– , ๐œ‰ )||. Let โ„ฑ โˆ— = {๐œ‰ โˆถ ๐œ‰ โˆˆ โ„ฑ, ๐‘š๐‘Ž๐‘ฅ๐œ“ โˆˆ ฮจ ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| = ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(โˆ…๐‘– , ๐œ‰ )||. Choose some ๐œ™ โˆ— such that, for given ๐œ‰ โˆˆ โ„ฑ we have ๐‘š๐‘Ž๐‘ฅ๐œ“ โˆˆ ฮจ ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| = ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ™๐‘–โˆ— , ๐œ‰ )||. Another approach: Instead of ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘, we use ||๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘ (modified bias). i.e., we consider the problem: ๐‘š๐‘–๐‘›๐œ‰๐œ–โ„ฑ โ„’[ ๐ตโˆ’1 (๐œ‰ )] ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘ (1.4) The reasons for us to consider the A-optimality are: (i) (ii) (iii) The loss function is additive. ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )||2 = ๐‘ก๐‘Ÿ ๐ต๐‘–๐‘Ž๐‘ (๐œ“, ๐œ‰ ) = ๐‘ก๐‘Ÿ๐ต โˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )๐‘‡ ๐ตโˆ’1 (๐œ‰) = ๐’ƒ(๐œ“, ๐œ‰ )๐ตโˆ’2 (๐œ‰)๐’ƒ(๐œ“, ๐œ‰ )๐‘‡ . If we use modified bias, then we have ๐‘š๐‘Ž๐‘ฅ๐œ“ โˆˆ ฮจ ||๐’ƒ(๐œ“, ๐œ‰ )||2 = ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐’ƒ(๐œ™๐‘– , ๐œ‰ )||2 ; and ๐œ†๐‘› ||๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐œ†1 ||๐’ƒ(๐œ“, ๐œ‰ )||, therefore ||๐’ƒ(๐œ“, ๐œ‰ )|| โ†’ 0 ๐‘–๐‘š๐‘๐‘™๐‘–๐‘’๐‘  ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| โ†’ 0. 2. Bounded Bias A-Optimal Design We start this section by showing a contra-example of (1.3). Consider the regression model (1.2) with p = 2, i.e., ๐ธ [๐‘ฆ|๐‘ฅ] = ๐œƒ0 + ๐œƒ1 ๐‘ฅ + ๐‘ฅ 2 ๐œ“(๐‘ฅ) . Let ๐œ“ โˆˆ ฮจ = {๐œ“: | ๐œ“(๐‘ฅ ) โ‰ค ๐œ™(๐‘ฅ ) = ๐‘ฅ 2 ๐‘œ๐‘› ๐‘† โ‰” [โˆ’1, 1 ]}. We are going to show that ๐‘š๐‘Ž๐‘ฅ๐œ“ โˆˆ ฮจ ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )||2 > ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ™๐‘– , ๐œ‰ )||2 . In this case, we have ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ™๐‘– , ๐œ‰ )||2 = 0.619141. Let โˆ’๐‘ฅ 2 ๐œ“๐‘‘ (๐‘ฅ ) = { 0 ๐‘ฅ2 โˆ’ 1 โ‰ค ๐‘ฅ โ‰ค โˆ’๐‘‘ โˆ’๐‘‘<๐‘ฅ <๐‘‘ , ๐‘‘โ‰ค๐‘ฅ โ‰ค1 where 0 โ‰ค ๐‘‘ โ‰ค 1, and let ๐œ‰ be the uniform probability measure on [-1, 1]. It is clear that ๐œ“๐‘‘ (๐‘ฅ ) โˆˆ ฮจ. If we choose ๐‘‘0 = 0.6, we find that ๐’ƒ๐‘‡ (๐œ“๐‘‘0 )๐ตโˆ’2 ๐’ƒ(๐œ“๐‘‘0 ) = 0.629725. Hence we have ๐‘š๐‘Ž๐‘ฅ๐œ“ โˆˆ ฮจ ๐’ƒ๐‘‡ (๐œ“)๐ตโˆ’2 ๐’ƒ(๐œ“) โ‰ฅ ๐’ƒ๐‘‡ (๐œ“๐‘‘0 )๐ตโˆ’2 ๐’ƒ(๐œ“๐‘‘0 ) > ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 {๐’ƒ๐‘‡ (๐œ™๐‘– )๐ตโˆ’2 ๐’ƒ(๐œ™๐‘– )}. A contra-example for continuous ๐œ“ can be easily constructed as follows: โˆ’๐‘ฅ 2 ๐‘‘22 (๐‘ฅ + ๐‘‘1 ) ๐‘‘2 โˆ’ ๐‘‘1 0 ๐œ“๐‘‘1 ,๐‘‘2 (๐‘ฅ) = ๐‘‘22 (๐‘ฅ โˆ’ ๐‘‘1 ) ๐‘‘2 โˆ’ ๐‘‘1 { ๐‘ฅ2 โˆ’ 1 โ‰ค ๐‘ฅ โ‰ค โˆ’๐‘‘2 โˆ’ ๐‘‘2 < ๐‘ฅ โ‰ค โˆ’๐‘‘1 โˆ’ ๐‘‘1 < ๐‘ฅ โ‰ค ๐‘‘1 ๐‘‘1 < ๐‘ฅ โ‰ค ๐‘‘2 ๐‘‘2 โ‰ค ๐‘ฅ โ‰ค 1 With ๐‘‘1 and ๐‘‘2 near 0.6 and close to each other. For some special cases, (1.3) may be true. Let us consider again the regression model (1.2) with p = 2. Let โ„ฑ๐‘  = {๐œ‰: ๐œ‰ โˆˆ โ„ฑ ๐‘Ž๐‘›๐‘‘ ๐œ‰ (โˆ’๐‘ฅ ) = 1 โˆ’ ๐œ‰ (๐‘ฅ )} and ฮจ๐‘  (๐œ™) = {๐œ“: |๐œ“(๐‘ฅ )| โ‰ค ๐œ™(๐‘ฅ ) ๐‘ค๐‘–๐‘กโ„Ž ๐‘๐‘œ๐‘กโ„Ž ๐œ“(โˆ’๐‘ฅ ) = ๐œ“(๐‘ฅ ) ๐‘Ž๐‘›๐‘‘ ๐œ™(โˆ’๐‘ฅ ) = ๐œ™(๐‘ฅ ) ๐‘œ๐‘› ๐‘†}. Then we have ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| = |โˆซ ๐‘ฅ 2 ๐œ“(๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ )| โ‰ค โˆซ ๐‘ฅ 2 |๐œ“(๐‘ฅ)| ๐‘‘๐œ‰(๐‘ฅ) โ‰ค โˆซ ๐‘ฅ 2 ๐œ™(๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ). We conclude that ๐‘š๐‘Ž๐‘ฅ๐œ“ โˆˆ ฮจ ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| = โˆซ ๐‘ฅ 2 ๐œ™(๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ) as we know that ๐œ“ โˆˆ ฮจ. For ๐œ™(๐‘ฅ) we consider two scenarios A and B. Scenario A: Let ๐‘™(๐‘ฅ ) = ๐‘ฅ๐œ™(โˆš๐‘ฅ) such that ๐‘™(๐‘ฅ) is convex on [0, 1]. Scenario B: Let ๐œ™(๐‘ฅ ) = โˆ‘๐‘˜๐‘–=0 ๐‘Ž2๐‘–+2 ๐‘ฅ 2๐‘– such that ๐œ™(๐‘ฅ ) โ‰ฅ 0 on S. For scenario A, we have ๐‘š๐‘–๐‘›๐œ‰ โˆˆ โ„ฑ๐‘  ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ ) ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ ๐‘š๐‘Ž๐‘ฅ๐œ“ โˆˆ ฮจ๐‘  ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘ (2.1) which is equivalent to ๐‘š๐‘Ž๐‘ฅ๐ธ[๐‘] ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ ๐ธ [๐‘™(๐‘)] โ‰ค ๐‘ where ๐‘ = ๐‘‹ 2 . By Jensenโ€™s inequality, we have ๐‘™(๐ธ [๐‘]) โ‰ค ๐ธ[๐‘™(๐‘)]. We know that ๐‘™ (๐ธ [๐‘]) = ๐ธ[๐‘™(๐‘ )]. If and only if P(Z= z) = 1. Let ๐‘ง0 be a real number between 0 and 1 such that ๐‘™ (๐‘ง0 ) = ๐‘ and P(Z = ๐‘ง0 ) = 1. We find that the solution to (2.1) is the design measure ๐œ‰0 (ยฑโˆš๐‘ง0 ) = 1/2 where ๐‘ง0 = ๐‘™ โˆ’1 (๐‘) and max ๐œ‡2 = ๐‘ง0 . For scenario B, (2.1) is equivalent to ๐‘š๐‘Ž๐‘ฅ๐œ‰ โˆˆ โ„ฑ๐‘  ๐œ‡2 ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ โˆ‘๐‘˜๐‘–=0 ๐‘Ž2๐‘–+2 ๐œ‡2๐‘–+2 โ‰ค ๐‘ (2.2) Let ๐‘˜ ๐‘โˆ— = ๐‘š๐‘–๐‘›๐œ‰ โˆˆ โ„ฑ๐‘  โˆ‘ ๐‘˜ ๐‘Ž2๐‘–+2 ๐œ‡2๐‘–+2 ๐‘Ž๐‘›๐‘‘ ๐‘ โˆ— = ๐‘š๐‘Ž๐‘ฅ๐œ‰ โˆˆ โ„ฑ๐‘  โˆ‘ ๐‘–=0 ๐‘Ž2๐‘–+2 ๐œ‡2๐‘–+2 . ๐‘–=0 Then (2.2) has solution for any ๐‘โˆ— โ‰ค ๐‘ โ‰ค ๐‘ โˆ— . (2.2) has no solution for ๐‘ โ‰ค ๐‘โˆ— . For ๐‘ > ๐‘ โˆ— , (2.2) has the same solution as the regular optimal design problem. The above problem is solvable as it only depends on the first ๐‘˜ even moments. Numerical search is needed to find the optimal solution. However, when k is small we can solve the problem explicitly. Case 1. ๐‘˜=1 ๐œ™ ( ๐‘ฅ ) = ๐‘Ž2 + ๐‘Ž4 ๐‘ฅ 2 In this case, we know that ๐œ™(๐‘ฅ ) โ‰ฅ 0 if and only if (i) ๐‘Ž4 > 0, ๐‘Ž2 โ‰ฅ 0 or (ii) ๐‘Ž4 < 0, ๐‘Ž2 + ๐‘Ž4 โ‰ฅ 0. The following lemma is trivial: Lemma 2.1 If ๐œ™(๐‘ฅ ) โ‰ฅ 0, we have cโˆ— = 0 and ๐‘ โˆ— โˆถ= ๐‘š๐‘Ž๐‘ฅ๐œ‰โˆˆ โ„ฑ๐‘  {๐‘Ž2 ๐œ‡2 + ๐‘Ž4 ๐œ‡4 } = ๐‘š๐‘Ž๐‘ฅ๐œ‰โˆˆ โ„ฑ0 {๐‘Ž2 ๐œ‡2 + ๐‘Ž4 ๐œ‡4 } ๐‘Ž2 + ๐‘Ž4 = { ๐›ผ ๐‘Ž22 โˆ’ 4๐‘Ž 4 ๐‘–๐‘“ ๐‘Ž4 > 0, ๐‘Ž2 โ‰ฅ 0 ๐‘œ๐‘Ÿ ๐‘Ž4 < 0, ๐‘Ž2 + 2๐‘Ž4 > 0 ๐‘–๐‘“ ๐‘Ž4 < 0, ๐‘Ž2 + ๐‘Ž4 โ‰ฅ 0, ๐‘Ž2 + 2๐‘Ž4 โ‰ค 0 where โ„ฑ0 = {๐œ‰: ๐œ‰ = 2 ฮ”ยฑโˆš๐‘ฅ + (1 โˆ’ ๐›ผ )ฮ”0 , 0 โ‰ค ๐›ผ โ‰ค 1, 0 โ‰ค ๐‘ฅ โ‰ค 1}. Let ๐œ‡2โˆ— be the maximum value of ๐œ‡2 in (2.2) and ๐œ‰ โˆ— be the corresponding design measure. We then have the following: Theorem 2.2 If ๐œ™(๐‘ฅ ) โ‰ฅ 0, then for any 0 โ‰ค ๐‘ โ‰ค ๐‘ โˆ— , we have 1 (i) ๐œ‰ โˆ— = 2 ฮ”ยฑ1 ๐‘Ž๐‘›๐‘‘ ๐œ‡2โˆ— = 1, ๐‘–๐‘“ ๐‘Ž2 + ๐‘Ž4 โ‰ค ๐‘; (ii) ๐œ‰ โˆ— = 2 ฮ”ยฑโˆš๐‘ง ๐‘Ž๐‘›๐‘‘ ๐œ‡2โˆ— = ๐‘ง, ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ง = (iii) ๐œ‰โˆ— = โˆ’๐‘Ž2 +โˆš๐‘Ž22+4๐‘Ž4 ๐‘ 1 ฯ„ 2๐‘Ž4 ฮ”ยฑ1 + (1 โˆ’ ๐œ)ฮ”0 ๐‘Ž๐‘›๐‘‘ ๐œ‡2โˆ— = ๐œ, ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐œ = 2 , ๐‘–๐‘“ ๐‘Ž2 + ๐‘Ž4 > ๐‘, ๐‘Ž4 > 0 ๐‘Ž๐‘›๐‘‘ ๐‘Ž2 โ‰ฅ 0; ๐‘ ๐‘Ž2 +๐‘Ž4 , ๐‘–๐‘“ ๐‘Ž2 + ๐‘Ž4 > ๐‘, ๐‘Ž4 < 0 ๐‘Ž๐‘›๐‘‘ ๐‘Ž2 + ๐‘Ž4 โ‰ฅ 0. Case 2. ๐‘˜=2 ๐œ™ ( ๐‘ฅ ) = ๐‘Ž2 + ๐‘Ž4 ๐‘ฅ 2 + ๐‘Ž6 ๐‘ฅ 4 In this case, we have the following two lemmas: Lemma 2.3 ๐œ™(๐‘ฅ ) โ‰ฅ 0 on [-1, 1] if and only if (i) (ii) (iii) (iv) ๐‘Ž6 < 0, ๐‘Ž2 โ‰ฅ 0 ๐‘Ž๐‘›๐‘‘ ๐‘Ž2 + ๐‘Ž4 + ๐‘Ž6 โ‰ฅ 0; or ๐‘Ž6 > 0, ๐‘Ž4 โ‰ฅ 0 ๐‘Ž๐‘›๐‘‘ ๐‘Ž2 โ‰ฅ 0; or ๐‘Ž6 > 0, ๐‘Ž4 < 0, ๐‘Ž2 > 0, ๐‘Ž4 + 2๐‘Ž6 โ‰ฅ 0, ๐‘Ž๐‘›๐‘‘ 4๐‘Ž2 ๐‘Ž6 โˆ’ ๐‘Ž42 โ‰ฅ 0; or ๐‘Ž6 > 0, ๐‘Ž4 < 0, ๐‘Ž2 > 0, ๐‘Ž4 + 2๐‘Ž6 < 0, ๐‘Ž๐‘›๐‘‘ ๐‘Ž2 + ๐‘Ž4 + ๐‘Ž6 > 0. Lemma 2.4 Let (๐‘Ž2 , ๐‘Ž4 , ๐‘Ž6 ) satisfies one of the four conditions (i) โ€“ (iv) in Lemma 2.3. Let ๐‘ฅ0 = โˆ’๐‘Ž4 โˆ’ โˆš๐‘Ž42 โˆ’ 3๐‘Ž2 ๐‘Ž6 . 3๐‘Ž6 Then we have, (i) (ii) ๐‘โˆ— = 0. ๐‘โˆ— = 1 (2๐‘Ž43 + 2๐‘Ž42 โˆš๐‘Ž42 โˆ’ 3๐‘Ž2 ๐‘Ž6 โˆ’ 9๐‘Ž2 ๐‘Ž4 ๐‘Ž6 โˆ’ 6๐‘Ž2 ๐‘Ž6 โˆš๐‘Ž42 โˆ’ 3๐‘Ž2 ๐‘Ž6 ) ๐‘–๐‘“ 0 < ๐‘ฅ0 < 1 {27๐‘Ž62 ๐‘Ž2 + ๐‘Ž 4 + ๐‘Ž6 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ Before we present our next theorem, we first define the following notations. ๐‘ ๐‘ N1: ๐›ผ1โˆ— = ๐‘Ž +๐‘Ž +๐‘Ž , ๐›ฝ1โˆ— = ๐‘ฅ1โˆ— = 0, ๐œˆ1โˆ— = ๐‘Ž +๐‘Ž +๐‘Ž , ๐‘Ž๐‘›๐‘‘ ๐œ‰1โˆ— = 2 4 6 2 4 6 ๐›ผ1โˆ— 2 ฮ”ยฑ1 + (1 โˆ’ ๐›ผ1โˆ— )โˆ†0 . 8๐‘Ž 2 ๐‘ ๐‘Ž ๐›ฝโˆ— 4๐‘Ž ๐‘ 6 N2: ๐›ผ2โˆ— = 0, ๐›ฝ2โˆ— = ๐‘Ž (๐‘Ž2 โˆ’4๐‘Ž , ๐‘ฅ2โˆ— = โˆ’ 2๐‘Ž4 , ๐œˆ2โˆ— = 4๐‘Ž ๐‘Ž 6โˆ’๐‘Ž2 , ๐‘Ž๐‘›๐‘‘ ๐œ‰2โˆ— = 22 ฮ”ยฑโˆš๐‘ฅ โˆ— + (1 โˆ’ ๐›ฝ2โˆ— )โˆ†0 . ๐‘Ž ) 4 2 6 4 6 2 6 (๐‘Ž +๐‘Ž )(๐‘Ž 2+4๐‘Ž ๐‘Ž โˆ’๐‘Ž 2 )+8๐‘Ž 2 ๐‘ 2 4 8๐‘Ž 2 (๐‘Ž +๐‘Ž +๐‘Ž โˆ’๐‘) ๐‘Ž +๐‘Ž 4 6 2 6 4 4 6 4 6 6 6 6 2 โˆ— N3: ๐›ผ3โˆ— = (๐‘Ž +3๐‘Ž , ๐›ฝ3โˆ— = (๐‘Ž +3๐‘Ž )(3๐‘Ž , 2 +2๐‘Ž ๐‘Ž +4๐‘Ž ๐‘Ž โˆ’๐‘Ž 2 ) , ๐‘ฅ3 = โˆ’ 2๐‘Ž )(3๐‘Ž 2+2๐‘Ž ๐‘Ž +4๐‘Ž ๐‘Ž โˆ’๐‘Ž 2 ) 4 6 4 6 6 2 6 4๐‘Ž6 ๐‘โˆ’(๐‘Ž4 +๐‘Ž6 )2 ๐œˆ3โˆ— = 3๐‘Ž2+2๐‘Ž ๐‘Ž +4๐‘Ž ๐‘Ž โˆ’๐‘Ž2 , ๐‘Ž๐‘›๐‘‘ ๐œ‰3โˆ— = 6 4 6 2 6 4 4 4 ๐›ผ3โˆ— 2 6 4 6 6 2 6 4 6 ๐›ฝ3โˆ— ฮ”ยฑ1 + 2 โˆ†ยฑโˆš๐‘ฅ โˆ— . 3 Furthermore, we set the following conditions. C1: ๐‘Ž2 + ๐‘Ž4 + ๐‘Ž6 โ‰ค ๐‘. 8๐‘Ž 2 ๐‘ ๐‘Ž 6 C2: ๐‘ฅ โˆ— = โˆ’ 2๐‘Ž4 โˆˆ (0, 1) ๐‘Ž๐‘›๐‘‘ ๐›ฝ โˆ— = ๐‘Ž (๐‘Ž2โˆ’4๐‘Ž โ‰ค 1. ๐‘Ž ) 6 4 4 2 6 8๐‘Ž 2(๐‘Ž +๐‘Ž +๐‘Ž โˆ’๐‘) ๐‘Ž +๐‘Ž 4 6 6 2 C3: ๐‘ฅ โˆ— = โˆ’ 42๐‘Ž 6 โˆˆ (0, 1) ๐‘Ž๐‘›๐‘‘ ๐›ฝ โˆ— = (๐‘Ž +3๐‘Ž )(3๐‘Ž 2 +2๐‘Ž ๐‘Ž +4๐‘Ž ๐‘Ž โˆ’๐‘Ž 2) โˆˆ (0, 1). 6 4 6 6 4 6 2 6 4 After some analysis and calculation, we have found the solutions to (2.2). We omit the detailed proof and summarize the results into the next theorem: Theorem 2.5 Let (๐‘Ž2 , ๐‘Ž4 , ๐‘Ž6 ) satisfies one of the four conditions (i) โ€“ (iv) in Lemma 2.3 and 0 โ‰ค ๐‘ โ‰ค ๐‘ โˆ—, where ๐‘ โˆ— is indicated in Lemma 2.4. Then the solution to (2.2) is listed below: 1 (i) If C1 is true, then ๐œ‰ โˆ— = 2 ฮ”ยฑ1 ๐‘Ž๐‘›๐‘‘ ๐œ‡2โˆ— = 1. (ii) If C1 is not true, but C2 and C3 are true, then ๐œ‡2โˆ— = max{๐œ1โˆ— , ๐œ2โˆ— , ๐œ3โˆ— } โ‰” ๐œ๐‘–โˆ— and the corresponding design measure is ๐œ‰๐‘–โˆ— , ๐‘– โˆˆ {1, 2, 3}. (iii) If C1 and C2 are not true, but C3 is true, then ๐œ‡2โˆ— = max{๐œ1โˆ— , ๐œ3โˆ— } โ‰” ๐œ๐‘—โˆ— and the corresponding design measure is ๐œ‰๐‘—โˆ— , , ๐‘— โˆˆ {1, 3}. (iv) If C1 and C3 are not true, but C2 is true, then ๐œ‡2โˆ— = max{๐œ1โˆ— , ๐œ2โˆ— } โ‰” ๐œ๐‘˜โˆ— and the corresponding design measure is ๐œ‰๐‘˜โˆ— , ๐‘˜ โˆˆ {1, 2} . (v) If C1, C2 and C3 are all not true, then ๐œ‡2โˆ— = ๐œˆ1โˆ— , and the corresponding design measure is ๐œ‰1โˆ— = ๐›ผ1โˆ— 2 ฮ”ยฑ1 + (1 โˆ’ ๐›ผ1โˆ— )โˆ†0 . The following corollary is obvious. Corollary 2.6 Let ๐œ™(๐‘ฅ ) = ๐‘Ž2 + ๐‘Ž4 ๐‘ฅ 2 + ๐‘Ž6 ๐‘ฅ 4 โ‰ฅ 0 on [-1, 1], and ๐‘Ž2 + ๐‘Ž4 + ๐‘Ž6 = 0. Then the 1 solution to (2.2) is ๐œ‰ โˆ— = 2 ฮ”ยฑ1 , and ๐œ‡2โˆ— = 1. Remark: Note that ๐‘Ž2 + ๐‘Ž4 + ๐‘Ž6 = 0 if and only if ๐œ™(ยฑ1) = 0, i.e., there is no violation at ยฑ1. The implication of Corollary 2.6 is that the bounded bias optimal design will be the same as usual optimal design if the regression model is not violated at ยฑ1. Let us define the efficiency of the bounded bias optimal design ๐œ‰ โˆ— as ๐‘’(๐œ‰ โˆ— ) = โ„’(๐œ‰ ๐‘œ )โ„โ„’(๐œ‰ โˆ— ), where ๐œ‰ ๐‘œ is the usual optimal design. It is clear that ๐‘’(๐œ‰ โˆ— ) is increasing in ๐œ‡2โˆ— . Consider the ๐‘ situation that ๐œ‡2โˆ— = ๐‘Ž +๐‘Ž +๐‘Ž . It is obvious that ๐‘’(๐œ‰ โˆ— ) is decreasing when c is decreasing for ๐‘โˆ— โ‰ค 2 4 6 ๐‘ โ‰ค ๐‘ โˆ—. This implies that we lose efficiency (smaller ๐‘’(๐œ‰ โˆ— )) to gain more protection on the possible bias (smaller c) when the amount of model violations at ยฑ1 are fixed. Similar results would be expected for ฮจ๐‘  (๐œ™) = {๐œ“: |๐œ“(๐‘ฅ )| โ‰ค ๐œ™(๐‘ฅ ) ๐‘ค๐‘–๐‘กโ„Ž ๐‘๐‘œ๐‘กโ„Ž ๐œ“(โˆ’๐‘ฅ ) = ๐œ“(๐‘ฅ ) ๐‘Ž๐‘›๐‘‘ ๐œ™(โˆ’๐‘ฅ ) = ๐œ™(๐‘ฅ ) ๐‘œ๐‘› ๐‘†}. Extension to the multiple linear regression model is straight forward: ๐ธ [๐‘ฆ|๐’™] = ๐œฝ๐‘‡ ๐’‡(๐’™) + ๐œ“(๐’™) where ๐œฝ๐‘‡ = (๐œƒ0 , ๐œƒ1 , โ€ฆ , ๐œƒ๐‘˜ ) and ๐’‡๐‘‡ (๐’™) = (1, ๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘˜ ). Let ฮจ๐‘ ๐‘˜ = {๐œ“: |๐œ“(๐’™)| โ‰ค ๐œ™(๐’™), ๐œ“(๐‘ฅ1 , โ€ฆ , โˆ’๐‘ฅ๐‘– , โ€ฆ , ๐‘ฅ๐‘˜ ) = ๐œ“(๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘– , โ€ฆ , ๐‘ฅ๐‘˜ )}, ๐œ™ (๐’™) = โˆ‘๐‘˜0 ๐‘Ž๐‘–2 ๐‘ฅ๐‘–2 and โ„ฑ๐‘ ๐‘˜ = {๐œ‰: ๐œ‰ ๐‘–๐‘  ๐‘ ๐‘ฆ๐‘š๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘œ๐‘› ? ? ? โІ ๐‘น๐‘˜ }. Then we have ๐ตโˆ’1 (๐œ‰ ) = ( 1 0 0 0 โˆซ ๐‘ฅ12 ๐œ‰(๐’™) โ‹ฏ โ‹ฎ โ‹ฑ โ‹ฏ 0 1 0 0 0 ๐œ‡2 0 )=( โ‹ฎ โ‹ฎ 2 ( ) โˆซ ๐‘ฅ๐‘˜ ๐œ‰ ๐’™ 0 0 โ‹ฏ โ‹ฑ โ‹ฏ 0 0 ) โ‹ฎ ๐œ‡2 and ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| = |โˆซ๐‘† ๐‘˜ ๐œ“(๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ )| โ‰ค โˆซ๐‘† ๐‘˜ |๐œ“(๐‘ฅ )| ๐‘‘๐œ‰ (๐‘ฅ ) โ‰ค โˆซ๐‘† ๐‘˜ ๐œ™(๐‘ฅ ) ๐‘‘๐œ‰ (๐‘ฅ ) = (โˆ‘๐‘˜0 ๐‘Ž๐‘–2 )๐œ‡2 . For A-optimality, it is clear that ๐‘š๐‘–๐‘›๐œ‰โˆˆโ„ฑ๐‘  ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ ) ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ๐‘˜๐‘  ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘ is equivalent to ๐‘š๐‘Ž๐‘ฅ๐œ‰โˆˆโ„ฑ๐‘  ๐œ‡2 ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ (โˆ‘๐‘˜0 ๐‘Ž๐‘–2 ๐œ‡2 ) โ‰ค ๐‘. We find ๐‘ 1 ๐‘ ๐œ‡2โˆ— = max ๐œ‡2 = โˆ‘๐‘˜ ๐‘Ž2 with ๐œ‰ โˆ— (โ€ฆ , ยฑโˆš๐‘ฅ๐‘– , โ€ฆ ) = 2๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐‘ฅ๐‘– = โˆ‘๐‘˜ ๐‘Ž2 โ‰ค 1. 1 ๐‘– 1 ๐‘– 1 If ๐‘ โ‰ฅ โˆ‘๐‘˜๐‘– ๐‘Ž๐‘–2 , then ๐œ‡2โˆ— = 1 with ๐œ‰ โˆ— (โ€ฆ , ยฑโˆš๐‘ฅ๐‘– , โ€ฆ ) = 2๐‘˜ . 3. Modified Bounded Bias A-Optimal Design As we mentioned before, instead of ||๐ตโˆ’1 (๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘, we may use ||๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘ (modified bias). i.e., we consider the problem: ๐‘š๐‘–๐‘›๐œ‰๐œ–โ„ฑ โ„’[ ๐ตโˆ’1 (๐œ‰ )] ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘. We choose โ„’[ ๐ตโˆ’1 (๐œ‰ )] = ๐‘ก๐‘Ÿ ๐ตโˆ’1 (๐œ‰ ). That is ๐‘š๐‘–๐‘›๐œ‰โˆˆโ„ฑ ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ ) ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐’ƒ(๐œ“, ๐œ‰ )|| โ‰ค ๐‘, (3.1) where โ„ฑ = {๐œ‰: ๐œŽ(๐œ‰ ) โІ [โˆ’1,1]} and ฮจ = {๐œ“: |๐œ“(๐‘ฅ )| โ‰ค ๐œ™(๐‘ฅ ), ๐œ™(โˆ’๐‘ฅ ) = ๐œ™(๐‘ฅ ), ๐œ™(๐‘ฅ ) โ‰ฅ 0 ๐‘œ๐‘› [โˆ’1,1]}. With the modified bias, we have the following: Theorem 3.1 ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐’ƒ(๐œ“, ๐œ‰ )|| = ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐’ƒ(๐œ™๐‘– , ๐œ‰ )|| ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐œ™๐‘– (๐‘ฅ ) = (๐‘ ๐‘”๐‘›๐‘ฅ )๐‘–โˆ’1 ๐œ™(๐‘ฅ ), ๐‘– = 1,2. Proof: Given ๐œ‰ โˆˆ โ„ฑ, we have 2 ||๐‘(๐œ“, ๐œ‰ )|| ๐’ƒ๐‘‡ (๐œ“, ๐œ‰ )๐’ƒ(๐œ“, ๐œ‰ ) โˆซ ๐‘ฆ ๐‘ ๐œ“(๐‘ฆ)๐‘‘๐œ‰(๐‘ฆ) = (โˆซ ๐‘ฅ ๐‘ ๐œ“(๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ ), โ€ฆ , โˆซ ๐‘ฅ 2๐‘โˆ’1 ๐œ“(๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ )) โ‹ฎ ( โˆซ ๐‘ฆ 2๐‘โˆ’1 ๐œ“(๐‘ฆ)๐‘‘๐œ‰(๐‘ฆ) ) = โˆฌ ๐‘ฅ ๐‘ ๐‘ฆ ๐‘ ๐œ“(๐‘ฅ )๐œ“(๐‘ฆ)๐‘‘๐œ‰(๐‘ฅ )๐‘‘๐œ‰(๐‘ฆ) + โ‹ฏ + โˆฌ ๐‘ฅ 2๐‘โˆ’1 ๐‘ฆ 2๐‘โˆ’1 ๐œ“(๐‘ฅ )๐œ“(๐‘ฆ)๐‘‘๐œ‰ (๐‘ฅ)๐‘‘๐œ‰(๐‘ฆ) ๐‘†ร—๐‘† ๐‘†ร—๐‘† = โˆฌ ๐‘ฅ ๐‘ ๐‘ฆ ๐‘ (1 + ๐‘ฅ๐‘ฆ + โ‹ฏ + ๐‘ฅ ๐‘โˆ’1 ๐‘ฆ ๐‘โˆ’1 )๐œ“(๐‘ฅ )๐œ“(๐‘ฆ)๐‘‘๐œ‰(๐‘ฅ )๐‘‘๐œ‰(๐‘ฆ) ๐‘†ร—๐‘† 1 โˆ’ (๐‘ฅ๐‘ฆ)๐‘ (๐‘ฅ๐‘ฆ)๐‘ ๐œ“(๐‘ฅ )๐œ“(๐‘ฆ)๐‘‘๐œ‰(๐‘ฅ )๐‘‘๐œ‰(๐‘ฆ) 1 โˆ’ ๐‘ฅ๐‘ฆ ๐‘†ร—๐‘† =โˆฌ 1 โˆ’ (๐‘ฅ๐‘ฆ)๐‘ (๐‘ฅ๐‘ฆ)๐‘ ๐œ“(๐‘ฅ )๐œ“(๐‘ฆ)|๐‘‘๐œ‰(๐‘ฅ )๐‘‘๐œ‰(๐‘ฆ) โ‰คโˆฌ | 1 โˆ’ ๐‘ฅ๐‘ฆ ๐‘†ร—๐‘† 1 โˆ’ (๐‘ฅ๐‘ฆ)๐‘ |(๐‘ฅ๐‘ฆ)๐‘ |๐œ“(๐‘ฅ )๐œ“(๐‘ฆ)๐‘‘๐œ‰(๐‘ฅ )๐‘‘๐œ‰(๐‘ฆ) 1 โˆ’ ๐‘ฅ๐‘ฆ ๐‘†ร—๐‘† โ‰คโˆฌ 1 โˆ’ (๐‘ฅ๐‘ฆ)๐‘ =โˆฌ (๐‘ ๐‘”๐‘›๐‘ฅ)๐‘ ๐‘ฅ ๐‘ (๐‘ ๐‘”๐‘›๐‘ฆ)๐‘ ๐‘ฆ ๐‘ ๐œ™(๐‘ฅ )๐œ™(๐‘ฆ)๐‘‘๐œ‰ (๐‘ฅ )๐‘‘๐œ‰(๐‘ฆ) ๐‘†ร—๐‘† 1 โˆ’ ๐‘ฅ๐‘ฆ 1 โˆ’ (๐‘ฅ๐‘ฆ)๐‘ ๐‘ ๐‘ ๐‘ฅ ๐‘ฆ ๐œ™(๐‘ฅ )๐œ™(๐‘ฆ)๐‘‘๐œ‰ (๐‘ฅ)๐‘‘๐œ‰(๐‘ฆ) ๐‘†ร—๐‘† 1 โˆ’ ๐‘ฅ๐‘ฆ = 1 โˆ’ (๐‘ฅ๐‘ฆ)๐‘ ๐‘ ๐‘ โˆฌ ๐‘ฅ ๐‘ฆ (๐‘ โ„Ž๐‘›๐‘ฅ)๐œ™(๐‘ฅ )(๐‘ ๐‘”๐‘›๐‘ฆ)๐œ™(๐‘ฆ)๐‘‘๐œ‰(๐‘ฅ )๐‘‘๐œ‰(๐‘ฆ) { ๐‘†ร—๐‘† 1 โˆ’ ๐‘ฅ๐‘ฆ โˆฌ ={ ||๐’ƒ(๐œ™1 , ๐œ‰ )||2 ||๐’ƒ(๐œ™2 , ๐œ‰ )||2 ๐‘–๐‘“ ๐‘ ๐‘’๐‘ฃ๐‘’๐‘› ๐‘–๐‘“ ๐‘ ๐‘œ๐‘‘๐‘‘. Hence, we have proved ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐’ƒ(๐œ“, ๐œ‰ )|| = ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐’ƒ(๐œ™๐‘– , ๐œ‰ )||. ๐‘–๐‘“ ๐‘ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘› ๐‘–๐‘“ ๐‘ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘ Corollary 3.2 (i) (ii) ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐’ƒ(๐œ“, ๐œ‰ )|| = ||๐’ƒ(๐œ™1 , ๐œ‰ )|| if p is even. ๐‘š๐‘Ž๐‘ฅ๐œ“โˆˆฮจ ||๐’ƒ(๐œ“, ๐œ‰ )|| = ||๐’ƒ(๐œ™2 , ๐œ‰ )|| if p is odd. Let ๐‘‡: โ„ฑ โ†’ ๐‘น1 by ๐‘‡(๐œ‰ ) = ๐‘š๐‘Ž๐‘ฅ๐‘–=1,2 ||๐’ƒ(๐œ™๐‘– , ๐œ‰ )|| and โ„ฑ๐‘ = {๐œ‰: ๐œ‰ โˆˆ โ„ฑ, ๐‘‡(๐œ‰) โ‰ค ๐‘}. Then we have the following three Lemmas. Lemma 3.3 (i) โ„ฑ๐‘ is convex. (ii) ๐œ‰ (๐‘ฅ ) โˆˆ โ„ฑ๐‘ ๐‘–๐‘“๐‘“ 1 โˆ’ ๐œ‰ (โˆ’๐‘ฅ โˆ’ ) โ‰” ๐œ‰ โˆ’ (๐‘ฅ ) โˆˆ โ„ฑ๐‘ . Proof: (i) โˆ€ ๐œ‰1 , ๐œ‰2 โˆˆ โ„ฑ๐‘ , we have ||๐‘(๐œ™๐‘– , ๐œ‰๐‘— )|| โ‰ค ๐‘, ๐‘– = 1,2, ๐‘Ž๐‘›๐‘‘ ๐‘— = 1,2.Let ๐œ‰ โˆ— = ๐œ†๐œ‰1 + (1 โˆ’ ๐œ†)๐œ‰2 (0 โ‰ค ๐œ† โ‰ค 1). Then we have ||๐’ƒ(๐œ™๐‘– , ๐œ‰ โˆ— )|| = ||๐œ†๐’ƒ(๐œ™๐‘– , ๐œ‰1 ) + (1 โˆ’ ๐œ†)๐’ƒ(๐œ™๐‘–, ๐œ‰2 )|| โ‰ค ฮป||๐’ƒ(๐œ™๐‘– , ๐œ‰1 )|| + (1 โˆ’ ฮป)||๐’ƒ(๐œ™๐‘– , ๐œ‰2 )|| โ‰ค ฮปc + (1 โˆ’ ฮป)c = c for i = 1,2 . Hence ๐œ‰ โˆ— โˆˆ โ„ฑ๐‘ . (ii) โˆ€๐œ‰ โˆˆ โ„ฑ๐‘ , let ๐œ‰ โˆ’ = 1 โˆ’ ๐œ‰(โˆ’๐‘ฅ โˆ’ ) we then have 1 ๐‘‡( ๐‘ ๐œ™๐‘– , ๐œ‰ โˆ’) 1 ๐‘ = (โˆซ ๐‘ฅ ๐œ™๐‘– (๐‘ฅ )๐‘‘๐œ‰ โˆ’( ๐‘ฅ ) , โ€ฆ , โˆซ ๐‘ฅ 2๐‘โˆ’1 ๐œ™๐‘– (๐‘ฅ )๐‘‘๐œ‰ โˆ’ (๐‘ฅ )) โˆ’1 โˆ’1 1 1 = (โˆซ ๐‘ฅ ๐‘ ๐œ™๐‘– (๐‘ฅ )๐‘‘(1 โˆ’ ๐œ‰ (โˆ’๐‘ฅ โˆ’ ) , โ€ฆ , โˆซ ๐‘ฅ 2๐‘โˆ’1 ๐œ™๐‘– (๐‘ฅ )๐‘‘(1 โˆ’ ๐œ‰ (โˆ’๐‘ฅ โˆ’ )) โˆ’1 โˆ’1 1 1 ๐‘ ( = (โˆซโˆ’1(โˆ’๐‘ฅ) ๐œ™๐‘– โˆ’๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ ) , โ€ฆ , โˆซโˆ’1(โˆ’๐‘ฅ)2๐‘โˆ’1 ๐œ™๐‘– (โˆ’๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ )) 1 1 = ((โˆ’1)๐‘+๐‘–โˆ’1 โˆซโˆ’1 ๐‘ฅ ๐‘ ๐œ™๐‘– (๐‘ฅ )๐‘‘๐œ‰(๐‘ฅ ) , โ€ฆ , (โˆ’1)2๐‘+๐‘–โˆ’2 โˆซโˆ’1 ๐‘ฅ 2๐‘โˆ’1 ๐œ™๐‘– (๐‘ฅ)๐‘‘๐œ‰(๐‘ฅ )). We have shown ||๐’ƒ(๐œ™๐‘– , ๐œ‰ )|| = ||๐’ƒ(๐œ™๐‘– , ๐œ‰ โˆ’ )||. Hence ๐œ‰ โˆ’ (๐‘ฅ) โˆˆ โ„ฑ๐‘ , Lemma 3.4 Let ๐ด = (๐‘Ž๐‘–๐‘— )๐‘›ร—๐‘› ๐‘Ž๐‘›๐‘‘ ๐ต = (๐‘๐‘–๐‘— )๐‘›ร—๐‘› be two non-singular matrices. Denote ๐ดโˆ’1 = โˆ— โˆ— โˆ— (๐‘Ž๐‘–๐‘— )๐‘›ร—๐‘› ๐‘Ž๐‘›๐‘‘ ๐ต โˆ’1 = (๐‘๐‘–๐‘— )๐‘›ร—๐‘› . If ๐‘๐‘–๐‘— = (โˆ’1)๐‘–+๐‘— ๐‘Ž๐‘–๐‘— then ๐‘๐‘–๐‘—โˆ— = (โˆ’1)๐‘–+๐‘— ๐‘Ž๐‘–๐‘— . Proof: Let ๐‘ƒ = (๐‘๐‘–๐‘— )๐‘›ร—๐‘› where ๐‘๐‘–๐‘— = { (โˆ’1)๐‘– 0 ๐‘–๐‘“ ๐‘– = ๐‘— ๐‘–๐‘“ ๐‘– โ‰  ๐‘— We then have ๐‘ƒ โˆ’1 = ๐‘ƒ, and ๐ต = ๐‘ƒ๐ด๐‘ƒ. Hence, we get ๐ตโˆ’1 = ๐‘ƒ โˆ’1 ๐ดโˆ’1 ๐‘ƒ โˆ’1 = ๐‘ƒ๐ดโˆ’1 ๐‘ƒ. This โˆ— implies that ๐‘๐‘–๐‘—โˆ— = (โˆ’1)๐‘–+๐‘— ๐‘Ž๐‘–๐‘— . Let โ„ฑ๐‘ (๐ด) = {๐œ‰๐‘œ : ๐œ‰๐‘œ โˆˆ โ„ฑ๐‘ , ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰๐‘œ ) = ๐‘š๐‘–๐‘›๐œ‰โˆˆโ„ฑ๐‘ ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ )}. We have Lemma 3.5 (i) (ii) โ„ฑ๐‘ (๐ด) is a convex subset of โ„ฑ๐‘ . ๐œ‰(๐‘ฅ) โˆˆ โ„ฑ๐‘ (๐ด) if and only if ๐œ‰ โˆ’ (๐‘ฅ) โˆˆ โ„ฑ๐‘ (๐ด). Proof: (i) For any ๐œ‰1 , ๐œ‰2 โˆˆ โ„ฑ๐‘ (๐ด), we have ๐œ‰1 , ๐œ‰2 โˆˆ โ„ฑ๐‘ and hence ๐œ‰ โˆ— = ๐œ†๐œ‰1 + (1 โˆ’ ๐œ†) ๐œ‰2 โˆˆ โ„ฑ๐‘ . Therefore, ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰1 ) = ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰2 ) = ๐‘š๐‘–๐‘›๐œ‰โˆˆโ„ฑ๐‘ ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ ) . Because ๐ต(๐œ‰ โˆ— ) = ๐œ†๐ต(๐œ‰1 ) + (1 โˆ’ ๐œ†)๐ต(๐œ‰2 ), hence we get ๐ตโˆ’1 (๐œ‰ โˆ— ) = [๐œ†๐ต(๐œ‰1 ) + (1 โˆ’ ๐œ†)๐ต(๐œ‰2 )]โˆ’1 โ‰ค ๐œ†๐ตโˆ’1 (๐œ‰1 ) + (1 โˆ’ ๐œ†)๐ตโˆ’1 (๐œ‰2 ) and ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ โˆ— ) โ‰ค ๐œ†๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰1 ) + (1 โˆ’ ๐œ†)๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰2 ). This implies that ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ โˆ— ) = ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰1 ) = ๐‘š๐‘–๐‘›๐œ‰โˆˆโ„ฑ๐‘ ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ ). We have proved ๐œ‰ โˆ— โˆˆ โ„ฑ๐‘ (๐ด). (ii) Let ๐œ‰1 โˆˆ โ„ฑ๐‘ (๐ด). Then ๐œ‰1 โˆˆ โ„ฑ๐‘ and ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰1 ) = ๐‘š๐‘–๐‘›๐œ‰โˆˆโ„ฑ๐‘ ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰ ). By Lemma 3.3 we know that ๐œ‰1โˆ’ (๐‘ฅ) โˆˆ โ„ฑ๐‘ . We need only to show that ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰1โˆ’1 ) = ๐‘ก๐‘Ÿ๐ตโˆ’1 (๐œ‰1 ). It follows by Lemma 3.4. The implication of Lemma 3.5 is that there exists a symmetric optimal design as the solution to (3.1) namely, ๐œ‰(๐‘ฅ)+ ๐œ‰ โˆ’ (๐‘ฅ) 2 ๐‘–๐‘“ ๐œ‰ (๐‘ฅ) โˆˆ โ„ฑ๐‘ . Therefore, we only need to search for the optimal solutions within the class of symmetric design measures. References Agostinelli, C. Robust model selection in regression via weighted likelihood methodology. Statistics and Probability Letters, 2002, 56, 289-300. Blanchard, W. Field, C.A. and Ronchetti, E.M. Robust linear model selection by crossvalidation. J. Amer. Stat. Assoc., 1997, 92, 1017-1023. Box, G.E.P. and Draper, N.R. A basis for selection of a response surface design. J. Amer. Statist. Assoc. 1959, 54, 622-654. Fedorov, V.V. Theory of optimal experiments. Academic Press, 1970, New York. Khan, J.A. Van Aelst, S. and Zamar, R.H. Robust Linear Model Selection Based on Least Angle Regression, J. Amer. Stat. Assoc., 2007, 102, 1289-1299. Kiefer, J. and Wolfowitz The equivalence of two extreme problems. Canad. J. Math 1960, 12, 3, 363-366. Li, K.C. Robust regression design with the design space consists of finitely many points. Ann. Statist, 1984 12, 2, 269-282. Marcus, M.B. and Sacks, J. Robust designs for regression problems. Statistical Theory and Related Topics II. 245-268, Academic Press, 1977, New York. Pesotchinsky, L. Optimal robust designs: Linear regression in Rk, Ann. Statist, 1982, 10, 511525. Wiens, D.P. Minimax designs for approximately linear regression. J. Statist. Planning and Inference, 1992, 31, 353-371.